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Supported Methods and Models 

 
Fluorescence decays analysis 
Two deconvolution methods are supported for the analysis of fluorescence decays: 

1. Deconvolution using Instrumental Response Function (IRF) 
2. Deconvolution using single-exponential Reference Compound Function (REF) 

In the first case (deconvolution with IRF) all models are based on the following common equation: 
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where (g t )δ+  denotes the instrument response function with a time shift of δ relative to the 

emission response; ( )B t  is the measured intensity of background emission (Bg) and 

Rayleigh/Raman scatter contributing with a relative weight of γ, b and c are constant values for 

dark noise and time-uncorrelated background photons in  and g f  respectively; ( , )I t A
G

 represents 

a model function with the vector of fit parameters A
G

 and n is the scattered light coefficient. 
Note: background is not subtracted from measured decay but added to theoretical decay accordingly 
to Eq. 1.  
In the second case (Reference deconvolution) all models use the following general equation: 
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where fref(t) denotes the measured one-exponential reference compound decay with decay time τref; 
B(t) is the measured intensity of background emission contributing with a relative weight of γ; b 
and c are the levels of time-uncorrelated background in reference and sample decays respectively, 
δ(t) - Dirac delta-function. 
The software provides the deconvolution of the multi-excitation decays [24, 25] (see figure bellow). 

 



Usually in this type of experiments t changes from -∞ to TSTOP. The formula for the convoluted 
sample decay takes the form 
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t
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= ⊗ = −∫ .  (3) 

If a finite lower limit (e.g. t = 0) is used then ( )f t  is only more or less correct in the last interval, 

because the fluorescence excited by some of amount the previous pulses has to be taken into 
account.  

Note: The Eqs. 1 and 2 can be applied for fitting both measured and simulated data. The simulated 
data can be obtained by the built-in simulator. 

Since the calculations with equations described above require a set of measured data (fluorescence 
decays, IRF/REF, background) we introduce a term Data Set that will be further used as a reference 
to the complete set of analyzed data. Thus, Data Set contains all necessary information that 
describes the data, related to the one measurement (simulation). In the case if data come from 
polarization experiment Data Set may contain either both parallel and perpendicular components or 
separately one of them. Also Data Set can contain some values (External parameters) that define the 
conditions under which the data was measured (e.g. temperature, etc.). 
Besides the model-specific parameters included in the vector A

G
 a number of common parameters 

(that participate in the Eqs. 1 and 2) can be estimated during the analysis. A set of available fit 
parameters in each case is defined by the configuration of each particular data set. Common fit 
parameters are: 

Parameter name Description 

Shift Non-integer channel-shift of IRF to the sample decay (δ in Eq. 1) 
IRF/REF_Bg  Dark noise parameter (b in Eq. 1 and 2) 
TCBg_factor  Time correlated background multiplication factor (γ in Eq. 1 and 2). 

Defines the relative weight of background emission ( )B t . This parameter 

is available only in the case if model is attached to the data set that 
contains ( )B t . 

Const_Bg Takes into account time-uncorrelated background photons in the sample 
decay (c in Eq. (1) and (2)) 

IRF_Contrib Coefficient of scattered light contribution (n in Eq. 1) 
tau_ref A decay time of one-exponential Reference compound (τref in Eq. 2). 

This parameter is available only if Reference deconvolution method is 
used. 

 
The Dataset properties are listed below: 
1. Time Step indicates the width of the time channel for measured (simulated) fluorescence decay. 

The value of this property is calculated as original time channel width that was set during 
measurement (simulation) multiplied on the value of Binning property.  



2. Binning allows to join the values of measured (simulated) data taken from two or more 
neighboring channels. The value of this property must be integer and indicates the number of 
united channels. 

3. Channels count indicates the total number of points in the measured (simulated) data. The value 
of this property is calculated as original number of points that was set during measurement 
(simulation) divided on the value of Binning property. This property is read only if Data Set 
contains measured data, otherwise it is changeable. 

4. Start analysis at defines the initial point for analysis. The fluorescence decay contained in the 
Data Set is analyzed starting at this point. 

5. End analysis at defines the end point for analysis. 

6. Start criterion at specifies the initial point for the target fit criterion calculation (normally should 
be equal to Start analysis at but can differ for fine tuning). 

7. Ref. life time keeps the value of life time of single exponential reference compound. This 
property is available only for data sets that contain reference compound data. The value of this 
property is used as initial guess for τref fit parameter. 

8. G-Factor keeps the value of G-Factor that is used for combining sample and reference compound 
parallel and perpendicular polarization components to the total decay (decay at magic angle). 
This property is available only for data sets that contain parallel and perpendicular polarization 
components. 

9. Scatter G-Factor keeps the value of G-Factor that is used for combining Instrumental response 
function parallel and perpendicular polarization components to the total Instrumental response 
function (IRF at magic angle). This property is available only for polarized data. 

10. Shift (Parallel Shift and Perpendicular Shift) keeps the value of shift between sample decay 
and Instrumental response function expressed in time channels. The value of this property is used 
as initial guess for δ fit parameter. 

11. IRF/REF Bg (Par. IRF/REF Bg and Perp. IRF/REF Bg) keeps the level of time-independent 
background in Instrumental response function or Reference compound. The value of this property 
is used as initial guess for b fit parameter. 

12. TC Bg factor (Par. TC Bg factor and Perp. TC Bg factor) keeps the multiplication factors for 
time dependent background. These parameters allow taking into account difference in 
measurement time between sample and background. For example, if sample decay was measured 
two times longer than background then TC Bg factor is 2. The value of this property is used as 
initial guess for γ fit parameter. 

13. Const Bg (Par. const Bg and Perp. const Bg) keeps the level of time-independent background 
in sample total decay (sample parallel and perpendicular polarization components). The value of 
this property is used as initial guess for c fit parameter. 

14. IRF Contrib. (Par. IRF Contrib. and Perp. IRF Contrib.) keeps the value of scattered light 
contribution in sample total decay (sample parallel and perpendicular polarization components). 
The value of this property is used as initial guess for n fit parameter. 



Models: 
All models that will be described below are used for calculation of δ-function response ( ),I t A

G
 

within Eqs. 1 or 2 which are responsible for getting the final theoretical decay that is fitted to the 
measured data during the analysis. In result, if any new model is implemented, all instrumental 
parameters, mentioned above, are automatically provided for this model. Each model has some 
properties and set of fit parameters that form vector A

G
. The use of some models requires that 

corresponding data set has necessary external parameters (like Polarization angle, Temperature, 
Concentration, etc.). The external parameters are the values that are presented in the model 
formulas but do not appear as fit parameters.  

All models have the following common properties: 

Property name Description 

Constraints This property displays the configuration dialog box that allows to add for 
current model the complex constraints (defined as special functions)  

Fluor IG type determines how the initial guesses for fit parameters are generated 
 

Multi-exponential model 
In a variety of applications, fluorescence decay of the sample and the sample anisotropy decay can 
be adequately approximated by a sum of exponentials [1-3]. The form of the equations that underlie 
the multi-exponential model depends on the model property FluorParametersType, which can be 
one of the following: “Amplitudes and decay times”, “Contributions and decay times”, “Ratio and 
decay times”, “Paired ratio and Decay times”: 

Amplitudes and decay times. The model generates fluorescence decay accordingly to the 
formula: 
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where pj and τj (j=1,...,M) are, respectively, the amplitudes and decay times of corresponding 
exponents; M is the number of exponents in the sum. 

The following model-specific fit parameters are added: 

Parameter name Description 

p Amplitude of corresponding fluorescence component 
tau Decay time of corresponding fluorescence component 

 
Contributions and decay times. Sometimes it is more convenient to use contributions of 

exponents instead of amplitudes. In this case pre-exponential factors are replaced by the 
normalization parameter N and contributions jα  and model formula takes the form: 
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The sum of contributions is always equal to 1. Therefore such coefficients (being multiplied on 
100) show the contribution of each exponent in percentage. Since in some cases the negative pre-
exponential multipliers are required to describe the sample fluorescence decay (for example, in the 

case if δ-impulse response function of the sample ( ),I t A
G

 rises at the beginning) the equations for 

( , )I t A
G

 can contain some exponents with pre-exponential factors less than 0. Switching between 

amplitudes and contributions is controlled by Normalization property of multi-exponential model 
and can be done independently for positive and negative pre-exponential factors. Therefore in the 

case if contributions are used, ( , )I t A
G

 is calculated as follows: 

1. The value of Normalization property is set to Positive: 
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2. The value of Normalization property is set to Negative: 
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3. The value of Normalization property is set to Positive and Negative: 
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where jp , jα  and jτ  (j=1,..., M ) are respectively amplitudes, contributions and decay times of 

corresponding exponents with positive pre-exponential factors; N is normalization parameter for 
exponents with positive pre-exponential factors;  n

jp , n
jα  and n

jτ  (j=0,..., nM ) are respectively 

amplitudes, contributions and decay times of corresponding exponents with negative pre-
exponential factors;  is normalization parameter for exponents with negative pre-exponential 
factors; 

nN
nM is a number of exponents with negative pre-exponential factors, r is the ratio of positive 

and negative normalization parameters. 
In addition the normalization parameters N,  and r (we can call it Common Multipliers) can be 
either fitted or fixed to some value. If normalization parameters are fixed, the model is no longer 

holds the relations  and 
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corresponding fluorescence component.  
Set of amplitude parameters can be easily recalculated to the pre-exponential factors and back. This 
is done by the software automatically while changing the set of parameters to use. 

The list of additional fit parameters will be following: 

Parameter name Description 

N Normalization parameter for exponents with positive pre-exponential factors 
N_n Normalization parameter for exponents with negative pre-exponential factors 



r ratio of positive and negative normalization parameters 
a Contribution of corresponding positive fluorescence component 
a_n Contribution of corresponding negative exponent 
tau Decay time of corresponding fluorescence component 
tau_n Decay time of corresponding exponent with negative pre-exponential factor 

 
Ratio and decay times. In this case pre-exponential factors are replaced by one 

normalization parameter N and ratio parameters 1jr − , where j = 1…M and M is the number of 

exponents. Model takes the following form: 
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In this case model has the following additional fit parameters: 

Parameter name Description 
N Normalization parameter 
r Ratio of amplitude of corresponding fluorescence component to the 

amplitude of first fluorescence component 
tau Decay time of corresponding fluorescence component 

 
Paired ratio and Decay times. In this case second pre-exponential factor from a pair is 

replaced by the ratio parameter , where i = 1…M/2 and M is the number of exponents. Model 

takes the following form: 
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In this case model has the following additional fit parameters: 

Parameter name Description 
p Amplitude of first fluorescence component in each pair 
r Ratio of amplitude of second fluorescence component in each pair to 

the amplitude of the first fluorescence component from the same pair 
tau Decay time of corresponding fluorescence component 

 
By default, the property FluorParametersType is set to "Amplitudes and decay times".  
 
Multi-exponential model properties are: 
1. FluorParametersType defines the form of equation (see Eqs. 4-10 above) that is used to generate 

the δ-impulse response function of the sample ( ),I t A
G

; 

2. FluorExponentsCount defines the number of exponents in Eq. 4-10 shown above. This property 
is available only in the case if FluorParametersType property is set either to Amplitudes and 
decay times or to Ratio and decay times; 



3. PosFluorExponentsCount defines the number of exponents with positive pre-exponential factors 
in equations shown above. This property is available only in the case if FluorParametersType 
property is set to Contributions and decay times; 

4. NegFluorExponentsCount defines the number of exponents with negative pre-exponential 
factors in equations shown above. This property is available only in the case if 
FluorParametersType property is set to Contributions and decay times; 

5. Normalization selects the type of positive and negative pre-exponential factors (amplitudes or 

contributions) that are used by multi-exponential model for calculating ( , )I t A
G

. This property is 

available only in the case if FluorParametersType property is set to Contributions and decay 
times. 

6. FitCommonMultiplier selects the type of normalization of the preexponential factors. If this 
property is set to True, the normalization parameters N,   and r fits the common amplitude 
and sum of contributions is always equal to unity for positive exponents and to -1 for negative 

exponents. If the property is set to False, the model does not hold the relations 
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Gauss distribution of decay rates model 
The gauss distribution of decay rates model [4, 5] generates the impulse response function of the 
sample I(t) according to the following formula: 
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where A is the normalization parameter; σ is the standard deviation on decay rate; μ is average 
decay rate; k0 denotes the minimum decay rate; erfc denotes the complementary error function; α 
defines the relative contribution of second fluorescence component; λ2 is the inverted decay time of 
second fluorescence component. 
 
Gauss distribution of decay rates model parameters are: 

Parameter name Description 
A  is the normalization parameter; 
sigma  is standard deviation on decay rate; 
mu  is average decay rate; 
k0  is minimum decay rate; 
alpha  defines the relative contribution of second fluorescence component; 
lambda2  is inverted decay time of second fluorescence component. 

 
This model has no additional properties. 



Poisson distribution of decay rates model 
This model generates the fluorescence decay according to the following formula: 
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where A is the normalization parameter; λ1 is the inverted decay time of first fluorescence 
component in absence of energy transfer or other quenching; c is concentration; β1 is quenching 
efficiency of first fluorescence component; μ is average number of quenchers; ε is the rate of 
quenching for a probe interacting with one quencher; α defines the relative contribution of second 
fluorescence component; λ2 is the inverted decay time of second fluorescence component in 
absence of energy transfer or other quenching. 

 
This model has the following additional fit parameters: 

Parameter name Description 

A Amplitude parameter 
lambda1 Inverted decay time of first fluorescence component in absence of 

energy transferor other quenching 
beta1 Parameter for quenching efficiency of first fluorescence component 
mu Average number of quenchers seen by the probe 
epsilon Rate of quenching for a probe interacting with one quencher  
alpha Parameter that defines the relative contribution of second fluorescence 

component 
lambda2 Inverted decay time of second fluorescence component in absence of 

energy transferor other quenching 

Required external parameters: 

External parameter 
name 

Description 

Concentration This external parameter defines the concentration. The value of this 
external parameter is used as c in model formulas mentioned above. 

This model has no additional properties. 

Excited-state reactions 
Compartmental models are used for analysis of excited-state reactions. Compartmental model 

in general form is defined by the following matrix equation: 
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where: ( , )I t A
G

 is aδ -impulse response function calculated according to the compartmental model; 

D  is a proportionality coefficient; C  is a ( )1 N×  vector: [ ]1 2 NC C C C= …  that contains the  

emission weighting factors of species 1,…N; 



A  is a  matrix:  that is defined by the rate constants of the 

reactions between compartments in the system; 
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 that represents the concentration of the species 1,…,N. 

The current version of TRFA Data Processor Advanced software contains 2-compartmental and 3-
compartmental models described bellow. 
 
2-compartmental model 
The 2-compartmental model [8, 9] is designed to describe the behavior of a dynamic, linear, time-
invariant, intermolecular system consisting of two distinct types of ground-state species and two 
corresponding excited-state species. This system can be presented by the following scheme: 

 

As it is shown on the scheme above ground-state species 1 can reversibly react with co-reactant M 
to form ground-state species 2. Excitation by light creates the excited-state species 1* and 2*, which 
can decay by fluorescence (F) and non-radiative (NR) processes. The composite rate constant for 
these processes is denoted by k0i (= kFi + kNRi) for species i* (i = 1,2). k21 represents the second-order 
rate constant for the association 1* + M → 2*, while k12 is the first-order rate constant for 
dissociation of 2* into 1* and M.  

The impulse response function of the sample ( ),I t A
G

 for the system described above can be 

calculated according to the equation (10), where C is the 1 x 2 vector that contains the emission 
weighting factors of species 1* and 2* at emission wavelength; B is the 2 x 1 vector whose 
elements represent the concentration of species 1* and 2* at time zero. A is 2 x 2 matrix defined as 
follows: 

 01 21 12
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where k01, k02, k12, k21 are the rate constants described above; [M] is the co-reactant concentration. 
 



2-compartmental model parameters are: 
Parameter name Description 

D  is the normalization parameter 
C1  is the emission weighting factor of species 1* 
C2  is the emission weighting factor of species 2* 
K01  is the composite rate constant of species 1* 
K12  is the first-order rate constant for dissociation of 2* into 1* and co-reactant 

M 
K21  represents the second-order rate constant for the association 1* + M → 2* 
K02  is the composite rate constant of species 2* 
B1  is the concentration of species 1* at time zero 
B2  is the concentration of species 2* at time zero 

 
The 2-compartmental model contains no additional properties. 
 
External parameters required by 2-compartmental model: 
1. [M] is the co-reactant concentration. 
3-compartmental model 
The 3-compartmental model [10-12] is designed to describe the behavior of a causal, linear, time-
invariant, intermolecular system consisting of three distinct types of ground-state species (1, 2, 3) 
and three corresponding excited-state species (1*, 2*, 3*). This system can be presented by the 
following scheme: 

  
 
As it is shown on the scheme above species 1 (respectively 1*) can reversibly react with co-reactant 
M to form species 2 (respectively 2*). Also species 1 (respectively 1*) can reversibly react with co-
reactant N to form species 3 (respectively 3*). Also the excited-state interconversion between states 
2* and 3* exists. The excited-state species 1*, 2* and 3* created by light excitation can decay by 
fluorescence (F) and non-radiative (NR) processes. The composite rate constant for these processes 
is denoted by k0i (= kFi + kNRi) for species i* (i = 1, 2, 3). k21 and k31 represent respectively the 
second-order rate constants for the association 1* + M → 2* and 1* + N → 3*.  The dissociations 



2* → 1* + M and 3* → 1* + N are respectively characterized by first-order rate constants k12 and 
k13. The rate constants k23 and k32 describe the direct interconversion between species 2* and 3*. 

The impulse response function of the sample ( ),I t A
G

 for the system described above can be 

calculated according to the equation (10), where C is the 1 x 3 vector that contains the emission 
weighting factors of species 1*, 2* and 3* at emission wavelength; B is the 3 x 1 vector whose 
elements represent the concentration of species 1*, 2* and 3* at time zero. A is 3 x 3 matrix defined 
as follows: 
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where k01, k12, k13, k21, k02, k23, k31, k32, k03, are the rate constants described above; [M] and [N] are 
concentrations for corresponding co-reactants. 
3-compartmental model parameters: 

Parameter name Description 

D  is the normalization parameter 
C1  is the emission weighting factor of species 1* 
C2  is the emission weighting factor of species 2* 
C3  is the emission weighting factor of species 3* 
K01  is the composite rate constant of species 1* 
K12  is the first-order rate constant for dissociation of 2* into 1* and co-

reactant M 
K13  is the first-order rate constant for dissociation of 3* into 1* and co-

reactant N 
K21 represents the second-order rate constant for the association 1* + M → 2* 
K02  is the composite rate constant of species 2* 
K23  is the interconversion rate constant from state 3* to 2* 
K31  represents the second-order rate constant for the association 1* + N → 3* 
K32  is the interconversion rate constant from state 2* to 3* 
K03  is the composite rate constant of species 3* 
B1  is the concentration of species 1* at time zero 
B2  is the concentration of species 2* at time zero 
B3  is the concentration of species 2* at time zero 

 
The 3-compartmental model contains no additional properties. 
External parameters required by 3-compartmental model: 
1. [M] is the co-reactant M concentration. 
2. [N] is the co-reactant N concentration. 

 



Anisotropy analysis 

The analysis of time-dependent anisotropy decays is very effective approach to study the structure 
of molecular systems, their behavior and processes that take place inside them. The shape of time-
dependent anisotropy decays can be affected by the non-spherical form of the molecules under 
study, the segmental flexibility of the macromolecules, depolarization due to presence of resonance 
energy transfer between molecules of the same type, etc. Therefore the fit of the theoretical curve 
generated by the model to the measured anisotropy decay and estimation in this way the parameters 
that can affect the theoretical curve shape can deliver the information about the investigated 
molecular system. 
The TRFA Data Processor Advanced software provides two approaches to perform the anisotropy 
analysis: 
1. The two stage anisotropy analysis based on sequential fit of measured sample total fluorescence 

decay and measured sample parallel and perpendicular polarization components.  
2. The anisotropy analysis based on direct global fit of sample parallel and perpendicular 

polarization components. This approach also supports associative anisotropy analysis.  
 

Two stage anisotropy analysis 
This approach to the anisotropy analysis consists of two sequential stages and can be applied to the 
Datasets that contain both parallel and perpendicular polarization decay components. 
On the first analysis stage the measured total fluorescence decay f(t) is calculated from parallel f||(t) 
and perpendicular f⊥(t) decay components according to the equation: 

( ) ( ) ( )|| 2f t f t Gf t⊥= + , (14) 

where G is a G-factor that can be calculated as the ratio of emission channel sensitivity for the 
vertically polarized light to the emission channel sensitivity for the horizontally polarized light at 
the sample wavelength. Further the measured total fluorescence decay is fitted to the model that 
generates the theoretical curve using the general equation that depends on the type of the Dataset. 
In the case if measured data contain sample polarization decay components and Instrumental 
response function polarization components g||(t) and g⊥(t) the theoretical curve for total 
fluorescence decay is calculated by the following general equation: 
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where 

( ) ( ) ( )|| || || 2 [IRFg t g t b G g t bδ ]δ⊥ ⊥ ⊥= + − + + −  (16) 

and ( , )I t A
G

 represents an δ-impulse response function of the total sample fluorescence decay that is 

different for each individual model; BB||(t) and B⊥B (t) are the measured parallel and perpendicular 
components of background emission intensity contributing with a relative weights of γ|| and γ⊥; c|| 
and c⊥ are values for time-uncorrelated background photons in the parallel and perpendicular 
sample decays; n|| and n⊥ are the scattered light coefficients; δ|| is the time shift in channels between 



g||(t) and f||(t); δ⊥ is the time shift in channels between g⊥(t) and f⊥(t); b|| and b⊥ are the levels of 
dark noise in the parallel and perpendicular components of instrumental response function. 
In the case if reference compound decay parallel and perpendicular polarization components have 
been obtained from the measurement instead of g||(t) and g⊥(t) the theoretical curve for total 
fluorescence decay is calculated by the following general equation: 
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where 

( ) ( ) ( )|| || 2 [ ]ref ref reff t f t b G f t b⊥ ⊥= − + − , (18) 

δ(t) − Dirac delta-function; fref||(t) and f ref⊥(t) denote the measured parallel and perpendicular 
components of one-exponential reference compound decay with decay time τref. All other values in 
Eq. 17 and 18 are equal to corresponding values in Eq. 15 and 16. 
The analysis of total fluorescence decay allows to obtain the estimations of model parameters that 

have an influence on the shape of the ( ),I t A
G

. 

On the second stage of anisotropy analysis parameters obtained on the previous stage can be fixed 
and global analysis of parallel f||(t) and perpendicular f⊥(t) sample decay components is performed. 
Since both parallel and perpendicular sample decay components are stored in one data set the 
theoretical curves for both of them are generated by the same model object associated with given 
data set. Also theoretical curves for both polarization components depend on one set of fit 
parameters defined by the model. 
In the case if measured data contain sample polarization decay components and instrumental 
response function polarization components g||(t) and g⊥(t) the theoretical curves for parallel and 
perpendicular sample decay components are calculated by the following general equations: 

( ) ( ) ( ) ( ) ( )
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G
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where 
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)

 

are respectively parallel and perpendicular components of impulse response function of the sample 

fluorescence decay and  is the model-dependent function that describes the anisotropy 

decay. 

( ,r t A
G

In the case if reference compound decay parallel and perpendicular polarization components have 
been obtained from the measurement instead of g||(t) and g⊥(t) the theoretical curves for parallel and 
perpendicular sample decay components are calculated by the following general equations: 
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 (20) 

The global analysis of parallel and perpendicular sample decay components allows to obtain the 

estimations of model parameters that have an influence on the shape of the ( )|| ,I t A
G

 and ( ),I t A⊥

G
 

and thereby fit the anisotropy decay. 
 
In order to switch between two analysis stages described above use the Experiment object property 
Analysis type. In the case if this property is set to Anisotropy the anisotropy decay and related 
dependencies can be viewed using Experiment window charts. 
In the case if data set selected for the analysis contains polarization components, the model attached 

to such data set provides the following set of common fit parameters: 

Parameter name Description 

TCBg_factor_par  Time correlated background multiplication factor (γ|| in Eqs. 15, 17, 19, 
20) for parallel polarized decay. Defines the relative weight of parallel 
polarized background emission. This parameter is available only in the 
case if model is attached to the data set that contains background. 

TCBg_factor_perp Time correlated background multiplication factor (γ⊥ in Eqs. 15, 17, 19, 
20) for perpendicular polarized decay. Defines the relative weight of 
parallel polarized background emission. This parameter is available only 
in the case if model is attached to the data set that contains background. 

Const_Bg_par  Accounts for time-uncorrelated background photons in the sample 
parallel decay component (c|| in Eqs. 15, 17, 19, 20) 

Const_Bg_perp  Accounts for time-uncorrelated background photons in the sample 
perpendicular decay component (c⊥ in Eqs. 15, 17, 19, 20) 

IRF_Contrib_par  Coefficient of scattered light contribution in the sample parallel decay 
component (n|| in Eqs. 15, 19) 

IRF_Contrib_perp Coefficient of scattered light contribution in the sample perpendicular 
decay component (n⊥ in Eqs. 15, 19) 

tau_ref A decay time of one-exponential Reference compound (τref  in Eq. 17, 
20). This parameter is available only if Reference deconvolution method 
is used. 

 

Anisotropy analysis based on the global fit 

The TRFA Data Processor Advanced provides the ability to perform the anisotropy analysis as a 
global fit of fluorescence decays measured on the different polarization angles with respect to the 
excitation light. 



To perform the anisotropy analysis in this way one should load the sample polarization decay 
components as separate Datasets. Each Dataset should contain the external parameter Polarization 
angle expressed in degrees. This external parameter is required by anisotropy model that was 
specially developed to perform anisotropy analysis via the global fit. 
Anisotropy model should be associated with each Dataset (for each Dataset a separate model must 
be used, not the same one) and for all such models the parameters with the same name should be 
linked together. The only parameter of anisotropy model that must not be linked is the parameter A 
that is responsible for the fit of decay amplitude. Since the sample polarization decay components 
are considered as separate Datasets and fitted to separate models the general equations shown in the 
Analysis of single fluorescence decay section are used for generating theoretical curves by the 
anisotropy model. 
The anisotropy model can be configured to perform non-associative and associative anisotropy 
analysis. The required type of the anisotropy analysis can be selected with Associations property of 
the model. 
The anisotropy model is inherited from the multiexponential model (so, it inherits all properties and 
parameters of the multiexponential model) and generates the fluorescence decay according to the 
following formula: 

( ) ( )2( ) 1 3cos 1 exp( / )fluor jk k k
k

I t I t r T tθ β∞

⎡ ⎤⎛ ⎞= × + − + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑ φ  (21) 

where ( )fluorI t is calculated by Eqs. 4-10 depending on the property FluorParametersType; Θ is the 

polarization angle, βk and ϕk are, respectively, the amplitudes and rotational correlation times of 
corresponding anisotropy exponents and Tjk controls the associations: , if fluorescence (from 

multiexponential model) and anisotropy components are associated, and , if not. 

1jkT =

0jkT =

By default the anisotropy model is configured for non-associative anisotropy analysis (all 
coefficients  are set to 1). In the case of associative anisotropy analysis (only certain associations 

between fluorescence and anisotropy exponents exist) the coefficients  that correspond to the 

unnecessary associations should be set to 0. 

jkT

jkT

Required external parameters: 

External parameter 
name 

Description 

Polarization angle This external parameter defines the angle of polarizer orientation in 
degrees. The value of this external parameter is used as Θ  in model 
formulas. 

 
Additional properties: 

Property name Description 
AnisExponentsCount This property defines number of anisotropy exponents  
Associations This property provides access to the “Associations” dialog box that 

was designed for making associations between fluorescence and 



anisotropy exponents. 
 

Additional fit parameters: 

Parameter name Description 
r_inf Residual polarization 
beta Amplitude of corresponding anisotropy component 
phi decay time of corresponding anisotropy component 

 

Constraints 

Specific constraints for the parameters of any model are implemented. Constraint can operate with 
any parameters according to its formula and therefore it is independent on a type of the model. The 
current version of TRFA Data Processor has just one constraint named “Ratio”. It is defined by the 
following formulas (comparison operator can be either more or less): 
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∑ ∑
∑ ∑

  (22) 

List1 – List4 can contain any parameters. If no parameters have been included in any list, it means 
that this list is absent in the formula. ‘Value’ contains any number. Several examples of possible 
application of “Ratio” constraint for the multi-exponential model are shown bellow: 

 
Value that is used as constraint Implementation in “Ratio” constraint 

Sum of pre-exponential factors List1 contains necessary parameters. Other Lists are 
empty. Value is any number 

Difference of pre-exponential factors List1 and List2 contain necessary parameters. Other 
Lists are empty. Value is any number 

Ratio of sums of pre-exponential 
factors 

List1 and List3 contain necessary parameters. Other 
Lists are empty. Value is any number 

Ratio of differences of pre-
exponential factors 

All lists contain necessary parameters. Value is any 
number 

Relations between sums or 
differences of pre-exponential 
factors 

Similar to one of previous topics, but the ‘Value’=0.  

 
 



Methods 
The parameters of the models can be estimated by a global fitting procedure. In a global analysis, 
several characteristics (fluorescence decays) are analyzed simultaneously. Certain fit parameters 
can be linked. The values of parameters linked together are kept equal to each other. Increasing 
number of fitted characteristics increases sensitivity and accuracy of the analysis while keeping the 
total number of parameters unchanged [23]  
In TRFA Data Processor the global fitting procedure is based on the Marquardt-Levenberg non-
linear method of Least Squares (Marquardt 1963) and Maximum-Likelihood Method. Since the 
non-linear method of least squares is a special case of Maximum-Likelihood method (when 
statistics of the noise in the measured data is Gaussian) the general fitting algorithm is developed 
where both analysis methods differ just in a target fit criterion: χ2 criterion [13, 14] for the least 
squares method and Maximum-Likelihood Estimator for Maximum-Likelihood method. 

Likelihood 
The aim is to maximize the Likelihood given by: 

1 2( ) ( , ,..., , )nL P x x x=a a , (23) 

where a = {a1,a2,…,am} is the vector of m unknown parameters, xi are the number of counts  in the 
i-th channel (i=1…,n) and P(x1,x2,…,xn,a)  is the probability to obtain  x1, x2, …, xn counts in 1, 2,…, 
n–th channel, respectively. In other words, one has to find such a combination of parameters a1, a2, 
…, am, which will ensure the maximum value for the Likelihood L(a).  
In case of independent channels, Eq. 23 can be rewritten as:  

1

( ) ( , )
n

i
i

L P x
=

= ∏a a .  (24) 

 
The maximization of Eq. 21 is equivalent to maximization of the logarithm of the Likelihood:  

1
ln ( ) ln ( , )

n

i
i

L P
=

= ∑a x a , (25) 

which is often used in practice. 

Experimental statistics 
Further practical treatment is strongly dependent on the used experimental statistics, i.e. on the 
shape of the functions P(x1,x2,…,xn,a) or P(xi,a). In fluorescence studies there are three basic 
possibilities: Gaussian, Poissonian and multinomial. TRFA Data Processor supports two first 
statistics:  

1. Gaussian statistics. It is assumed that the channels are independent and P(xi,a) is given by 
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where yi(a) is the “theoretical” or “predicted” number of counts in the i-th channel. Substituting 
Eq. (26) into Eq. (25) yields 
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Since the second term in the right-hand side of Eq. (27) is independent on a, the maximization of 
L(a) is equivalent to minimization of the following expression, taken from the first term in right-
hand side of Eq (27), 
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a
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which exactly corresponds to usual χ2 criterion. In this case the method based on minimization of 
the χ2 criterion (Least-Squares) is equivalent to the method based on the maximization of the 
Likelihood.  

2. Poissonian statistics. The channels are independent and P(xi,a) is given by 

( )[ ]exp ( ) ( )
( , )

!
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P x
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=
a a

a , (29) 

Substituting Eq. (29) into Eq. (25) yields 

1 1 1
ln ( ) ln ( , ) ( ) ln ( ) ln !

n n n n

i i i i
i i i i

L P x y x y
= = = =

= = − + −∑ ∑ ∑ ∑a a a a
1

ix , (30) 

It can be shown that the maximization of the Likelihood (Eq. (30)) is equivalent to the minimization 
of the following expression  
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p i i i i i
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The quantity χp
2 from Eq. (31) is equivalent to “usual” χ2 criterion with exactly the same statistical 

properties: χp
2/(n-m) should be around unity in a case of good fitting. 

Minimization procedure  
TRFA Data Processor Advanced uses gradient Marquardt-Levenberg optimization method [13, 16] 
in the minimization procedure. 
Let us consider the case of Gaussian statistics (χ2 criterion, given by Eq. (28)). The χ2 can be 
represented in series around “true” values of the parameter vector a0:  
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The condition for the minimum of χ2: 
2 ( ) 0χ∂

=
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a
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yields a set of linear algebraic equations with respect to small increments Δaj, j=1…m  
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The partial derivatives in Eq. (34) take the form: 
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and  
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It can be shown that with the increase of n the second term in right-hand side of Eq. (36) converges 
to zero much quicker than the first one. Therefore, in practical computations the second term in 
right-hand side of Eq. (36) is ignored and the matrix of the second derivatives can be written in the 
following way:  
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The logic of minimization of χp
2 is totally similar to the minimization of χ2. It is clear that Eqs. 

(32), (33) and (34) are exactly the same for all statistics. The difference is only in the derivatives. 
Let us consider the derivatives given by Eq. (35) and (36) for the Poissonian statistics. The first and 
second derivatives can be found from Eq. (31) as: 
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The first term in right-hand side of Eq. (39) can be ignored due to the same reason as before and the 
matrix of second derivatives takes the form: 
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Global target fit criterion 
In the case of Gaussian statistics the global target fit criterion is calculated by the equation [23]: 
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where ijx  and ijω  are the measured value and the standard deviation of the ith experimental data 

point in the jth measured curve and  is the theoretical value for this point; M is the number of 

globally analyzed curves; n

( )ijy a

i is the number of points in ith curve ;  and  is the number of free 
and linked parameters in i

im lnk
im

th model respectively, grm  is a number of parameter groups (sets of linked 
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For a good fit the final value of target fit criterion obtained after the analysis should be close to 1. 
This is possible if weighting factors  are calculated properly. Calculation of weighting factors 

depends on the analysis type (fluorescence decay or anisotropy analysis), the convolution method 
used in the analysis and performed using the general formula: 

ijw
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where calculation of iω  is calculated accordingly following formulas: 

Fluorescence decay analysis: 
IRF: 

S
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where  - sample total (measured at the magic angle) decay,  - reference decay, S
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calculated sample decay without the convolution; 
Anisotropy analysis via parallel and perpendicular components: 
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For MLE with Poissonian statistics the global target fit criterion is calculated as following: 
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For a good fit the final value of target fit criterion should also be close to 1.  

 
Additional fit quality criteria 

• Standard normal deviation Zχ2; 

Standard normal deviation Zχ2 criterion is calculated by the following equation [17, 18]: 
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k mZ

χ
χ− − )= − , (44) 

where k is the number of points in all decays that are used for the calculation of χ2; m is the number 
of fit parameters that should be estimated. The value Zχ2 is normally distributed, so that the tables 
for normal distribution can be used to judge the quality of the fit at certain confidence level. Thus 
|Zχ2| < 1.96 for testing at confidence level 95%; |Zχ2| < 2.58 (99%) and |Zχ2| < 3.3 (99,9%).  
Note. Strictly speaking, Zχ2 is derived and must be used only for χ2 criterion, but in TRFA Data 
Processor Advanced this and all following additional fit quality criteria is allowed to use also for 
MLE with Poissonian statistics.  

• Durbin Watson parameter; 
The Durbin-Watson parameter d is used to test for serial correlation between residuals and can be 
calculated by the following formula [18, 19]: 
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where Ri is the value of the residual in the i-th point; k is the number of points where residuals are 
calculated. To make decision about the quality of the fit the calculated Durbin-Watson parameter 
value should be compared with the values dL and dU (lesser and upper values). These values can be 
taken from corresponding tables and depend on the number of points k (see equation above) and on 
the numbers of independent variables. If d < dL the residuals are correlated. In the case if d > dU 
the residuals are regarded as uncorrelated. When dL < d < dU no conclusions about correlation of 
residuals can be made.  

• Runs Test; 
The ordinary runs test [20] is applied to check the randomness of the residuals signs versus channel 
number. In this test the actual number of ordinary runs R is calculated and compared with expected 
number Rexp. The term ordinary run denotes the consecutive sequence of residuals with the same 
sign. If the sequence of residuals is random the expected number of runs Rexp and number of runs 
variance  are calculated as follows: 
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where P and N are respectively the number of residuals with positive and negative sign. The values 
defined above enable to calculate the runs test parameter Z that will be distributed approximately as 
a standard normal deviate: 

 exp( RZ R R C) σ= − + , (47) 

where C is the continuity correction which partially compensates for the approximation of a discrete 
distribution by a continuous distribution. The value of C depends on the number of tested runs R. In 
the case if R is low (R < Rexp) C = 0.5. Otherwise (R > Rexp) C = -0.5. The calculated value Z can be 
used to make decision about the randomness of the residuals. The value |Z| should be compared at 
the certain confidence level with the value taken from tables for normal distribution. Thus |Z| < 1.96 



for testing at confidence level 95%. The greater the value of |Z|, the greater the probability that 
some correlation exists in the residuals. 

• Weighed residuals 
The weighted residuals provide visual estimation of conformity between measured (simulated) and 
theoretical decay. The equation that is used for calculation of weighted residuals depends on the 
type of target fit criterion that is applied for the analysis. 
In the case if χ2 target fit criterion is used for the fit the weighted residuals in i-th channel Ri are 
calculated by the following equation: 

 ( )th
i i iR f f f= − , (48) 

where fi and th
if  are, respectively, the values of measured (simulated) and theoretical fluorescence 

decays in i-th channel. 
In the case if MLE poissonian target fit criterion is used for the fit the weighted residuals in i-th 
channel Ri are calculated by the following equation: 

 ( )( ) 2 ln( )th th th
i i i i i i i iR sign f f f f f f f= − + − , (49) 

where function sign(x) is equal to 1 in the case if x is positive and -1 in the case if x is negative. For 
the successful fits the residuals should be randomly distributed around 0 and they should not exceed 
the range [-3; 3] for the normal statistics of the noise (the 3-sigma rule).  

• Autocorrelation function of residuals 
The plot of residuals autocorrelation function [1, 17] against the time channel provides the useful 
visual check of the quality of the fit. The autocorrelation function shows the correlation between the 
residuals that are certain channels apart. The autocorrelation function of weighted residuals  in  the 
j-th channel Cj (j = 1,...,m) is calculated by the following equation: 
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where Ri is the value of weighted residuals calculated in i-th channel; k is the number of channels 
where weighted residuals are calculated. The plots of autocorrelation are usually made across half 
of the data channels (m = k/2) were residuals are calculated. This is done in order to ensure the 
sufficient number of terms in the sum located in the numerator of the equation shown above thus 
providing the proper averaging. 
In some cases the visual inspection of autocorrelation function is more sensitive test for the 
goodness of the fit than the plot of weighted residuals. For successful fits the residuals 
autocorrelation is randomly distributed around zero. Bad fits provide low frequency periodicity in 
an autocorrelation plot that can be detected visually. 
Note: As it is follows from the equation shown above, C1 = 1. This means that each Ri value is fully 
correlated to itself. In order to make autocorrelation plots more convenient for visual inspection in 
TRFA Data Processor Advanced the value C1 is replaced on the graphs by 0.  



• Heterosedasticity of the residuals; 
Heterosedasticity of the residuals shows the dependence of weighted residuals on the sorted 
ascending values of theoretical decay. For successful fits this plot should not demonstrate the 
broadening of one or the other side of the graph. 

• Normal probability function of the residuals; 
This graphical fit quality criterion allows to inspect visually if weighted residuals correspond to the 
standard normal distribution. For this purpose the theoretical probability density function for 
standard normal distribution is displayed together with inspected probability density function 
calculated from weighted residuals. For successful fits two curves described above should be in a 
good agreement to each other. 
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