
Supported methods 
FCS [1-8, 17, 18, 19], FCCS [19], TIR-FCS [38], PCH [25, 23, 24, 41], PCMH [28], FIDA [21], FIMDA [22], FCA 

[15, 42], TIFCA [20, 42], coincidence bursts counting and coincidence analysis [16] are supported in FFS Data 

Processor (FFS DP).  

Analyzed characteristics 
Following statistical characteristics of the recorded photon stream can be analyzed globally [12, 26] in FFS DP: 

1. Autocorrelation function (ACF) 

2. Crosscorrelation function (CCF) 

3. Photon Counting Distribution (PCD) 

4. Fluorescence factorial cumulants (FFC) 

In addition FFS DP can analyze two special characteristics: 

5. Coincidence values histogram (CVH) 

6. Fit parameters dependence (FPD) 

FPD is a secondary characteristic that can be built from a number of fit parameter values of the same type obtained in 

the analysis of a number of datasets, e.g. diffusion time versus dataset number, molecular brightness versus binning 

time (at which a particular PCD was calculated), molecular fraction versus dilution factor, etc. 

In global analysis the statistical characteristics of different type can be combined (e.g. global analysis of ACF and 

PCD). This allows increasing accuracy and robustness of analysis. 

Models 
FFS technique is aimed to the investigations of the intensity fluctuations of fluorescent molecules excited by a tightly 

focused laser beam. These fluctuations may arise from translational and rotational diffusion, chemical reactions, 

deexcitation of the triplet-state, conformational and structural changes, etc [1-5, 15, 16, 26]. 

To take into account any phenomenon mentioned above while analyzing the FFS data the appropriate mathematical 

model should be chosen. In the FFS Data Processor, the mathematical models are represented by the corresponding 

Model Objects. 

Model Object can belong either to the Data Set or to the Simulation Data Source. In the first case Model is used to 

generate the theoretical characteristic (theoretical curve). In the second case it is used to generate noise-free source 

characteristic. Following models are available in FFS Data Processor: 

Characteristics Models Details 

 
Correlation function  Pure-Diffusion  (2D/3D free diffusion, 

(FCS, FCCS) Triplet-State   2D/3D anomalous diffusion, 

 Conformational  2D/3D confined diffusion, 

 Protonation   TIR-FCS are supported) in all these models 

 FCS flow 

 Custom 
 

Coincidence values histogram Gaussian 

(Coincidence analysis) Custom 
 

Cumulants FFC 

(FCA, TIFCA) Custom 
 

Photon counting distribution PCH    FIDA can be done using PCH with the polynomial  

(PCH, PCMH, FIDA, FIMDA) Gaussian   profile and normalization on two first PSF moments. 

 Poissonian   FIMDA can be performed as a global analysis of 

 Custom   a number of PCDs by PCH model with activated  
motion and process corrections and linking of all 

corresponding parameters . 

PCMH is a two-step analysis. First, a number of 

PCDs are analysed sequentially; second, the model 

Concentration vs. time or Brightness vs. time is 

used for fitting the obtained concentration (or 

brightness) versus binning time curve. 

Fit parameters dependence Concentration vs. time 

(PCMH, custom analysis) Brightness vs. time 

 Gaussian 

 Custom 



Identifiability 

All models mentioned above (except Custom model and PCH with “FIDA-like” polynomial brightness profile 

approximation) are totally identifiable, i.e. all parameters of the models can be uniquely determined on the basis of 

only one measured characteristic. PCH with “FIDA-like” polynomial brightness profile approximation at fixed 

background can have up to three equivalent sets of parameters. Each of them describes experimental data equally [27].  

Correlation function models 

The fluorescence emitted by the molecules in the focal spot is recorded photon by photon. Assuming constant 

excitation power, the fluctuations of the fluorescence signal are defined as the deviations from the temporal average 

of the signal: 
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The normalized fluorescence fluctuation autocorrelation function G(τ) for the fluctuation of the signal δF(t) from the 

average fluorescence intensity is defined as: 
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If diffusion is assumed to be the only process governing the number of fluorescent molecules in a 3D-Gaussian shaped 

observation volume (
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, where xy and z are the lateral and axial radii, respectively), 

autocorrelation function is represented as [31] 
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where j=1,2,3… and 1j
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F  , N is the average number of fluorescent molecules in the effective volume 
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2.z, Fj and τdif j are, respectively, the contribution and translational 

diffusion relaxation time of molecules of the j-th fluorescent component. 

The lateral diffusion time τdif describes the residence time of a particle in the observation volume, which is related to 

the diffusion coefficient Dtran by: 
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The amplitude of the correlation function, G(0), represents the average number of molecules N found in the 

observation volume: 

(0) 1 1/G N   

It was assumed that the fluorescent brightness of a molecule is not changed during binning time interval and additional 

contribution to the recorded signal due to background is negligible. Besides free diffusion there are some additional 

processes (intercombination conversion, conformational changes, etc.) that can cause fluctuations of the fluorescence 

intensity. There are also different kinds of molecular motion: flow, two dimensional, anomalous and constrained 

diffusion. With some modification of the instrument TIR-FCS is also possible.  

The correlation function models that are included in FFSDP are based on the following general formula [31, 17, 18, 

19]: 
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where: 

Ginf is the level of autocorrelation function at     (by default inf 1G  ); 

N denotes the average number of fluorescent particles in the effective volume Veff; 
2(1 )BG bgX R   denotes the background correction multiplier ( ( )bg bg S bgR I I I   denotes background ratio, where 

Is is the sample signal and Ibg is the uncorrelated background signal). Correction to background is performed if property 

Background correction is set on; 

 kineticsX   denotes kinetic process; 

 motionG   describes motion type of the particles. 



Brightness correction is necessary if molecules with different weight have different quantum yield (it is performed 

if property Brightness correction is set on). It has two options: either correction to the absolute brightness or to its 

ratio. The last option allows to perform the global analysis of ACFs and PCDs if the brightness ratio option is selected 

in the PCH model. In the case of brightness correction for the absolute brightness the following replacement in the 

motion term of a model equation is made: 
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where qi and Ni are, respectively, brightness and number of particles for i-th component, 
jN N  is the average 

number of fluorescent particles, i iF N N  is the contribution of molecules of the i-th fluorescent component. 

N, Fi (in the case if brightness correction is set off) and Ni, qi (in the case if brightness correction is set on) are fit 

parameters, where i=1,2,..., n (n - number of fluorescent components). 

The models are classified by kinetic term  kineticsX  . For each model with particular  kineticsX   several types of 

motion are available trough the Motion type property. The following motion types of the particles are implemented: 

 Free 2D Diffusion  

 Free 3D Diffusion  

 Anomalous 2D Diffusion  

 Anomalous 3D Diffusion  

 Confined 2D Diffusion  

 Confined3D Diffusion  

 TIRR-FCS 

 

Description of the motion types is given below. 

Free 2D Diffusion term 
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where Fi and 
diff

iT  are, respectively, fraction and translational diffusion relaxation time of molecules of the i-th 

fluorescent component. 

Fit parameters added to the general model by Free 2D Diffusion term: 

1. Fi is the contribution of molecules of the i-th fluorescent component. In the case if brightness of the particles should 

be taken into account Fi is replaced by Ni (the number of particles for i-th component). For more information see 

brightness correction topic.  

2. Ti is the translational diffusion relaxation time of molecules of the i-th fluorescent component. 

Free 3D Diffusion term 
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where Fi and 
diff

iT  are, respectively, fraction and translational diffusion relaxation time of molecules of the i-th 

fluorescent component, a is the structural parameter. 

Fit parameters added to the general model by Free 3D Diffusion term: 

1. Fi is the contribution of molecules of the i-th fluorescent component. In the case if brightness of the particles should 

be taken into account Fi is replaced by Ni (the number of particles for i-th component). For more information see 

brightness correction.  

2. Ti is the translational diffusion relaxation time of molecules of the i-th fluorescent component. 

3. a is the structural parameter. 

Anomalous 2D Diffusion term 
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where Fi and 
diff

iT  are, respectively, fraction and translational diffusion relaxation time of molecules of the i-th 

fluorescent component, α denotes the anomality factor. 

Fit parameters added to the general model by Anomalous 2D Diffusion term: 

1. Fi is the contribution of molecules of the i-th fluorescent component. In the case if brightness of the particles should 

be taken into account Fi is replaced by Ni (the number of particles for i-th component). For more information see 

brightness correction.  

2. Ti is the translational diffusion relaxation time of molecules of the i-th fluorescent component. 

3. alpha is the anomality factor α. 

Anomalous 3D Diffusion term 
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where Fi and 
diff

iT  are, respectively, fraction and translational diffusion relaxation time of molecules of the i-th 

fluorescent component, a is the structural parameter, α denotes the anomality factor. 

Fit parameters added to the general model by Anomalous 3D Diffusion term: 

1. Fi is the contribution of molecules of the i-th fluorescent component. In the case if brightness of the particles should 

be taken into account Fi is replaced by Ni (the number of particles for i-th component). For more information see 

brightness correction.  

2. Ti is the translational diffusion relaxation time of molecules of the i-th fluorescent component. 

3. alpha is the anomality factor α. 

4. a is the structural parameter. 

Confined 2D Diffusion term [37] 
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diff

iT  are, respectively, 

fraction and translational diffusion relaxation time of molecules of the i -th fluorescent component, xyr  denotes the 

distance lateral direction at which the intensity of the exciting laser beam is dropped by 2e , yd  is the confined 

volume diameter (f.e. diameter of celorganelle)  

Fit parameters added to the general model by Confined 2D Diffusion term: 

1. Fi is the contribution of molecules of the i-th fluorescent component. In the case if brightness of the particles should 

be taken into account Fi is replaced by Ni (the number of particles for i-th component). For more information see 

brightness correction.  

2. Ti is the translational diffusion relaxation time of molecules of the i-th fluorescent component. 

3. Y is dy/rxy. 

 

Confined 3D Diffusion term [37] 
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diff

iT  are, respectively, 

fraction and translational diffusion relaxation time of molecules of the i -th fluorescent component, z

xy

r
a

r
  is the 

structure parameter, zr  and xyr  distances in axial and lateral direction at which the intensity of the exciting laser beam 

is dropped by 2e , zd  and yd  are the diameters of the small sample within the detection volume. 

Fit parameters added to the general model by Confined 3D Diffusion term: 

1. Fi is the contribution of molecules of the i-th fluorescent component. In the case if brightness of the particles should 

be taken into account Fi is replaced by Ni (the number of particles for i-th component). For more information see 

brightness correction.  

2. Ti is the translational diffusion relaxation time of molecules of the i-th fluorescent component. 

3. Y is dy/rxy. 

4. Z is dz/rz. 

5. a is the structural parameter. 

TIR-FCS term [38] 
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where iF  and 
diff

iT  are, respectively, fraction and axial diffusion relaxation time of molecules of the i-th fluorescent 

component, a is the structural parameter 0 xya z  , 
2( ) exp( ) ( )erfcx x x erfc x  is the scaled complementary error 

function. 

Fit parameters added to the general model by TIR-FCS term: 

1. Fi is the contribution of molecules of the i-th fluorescent component. In the case if brightness of the particles should 

be taken into account Fi is replaced by Ni (the number of particles for i-th component). For more information see 

brightness correction.  

2. Ti is the axial diffusion relaxation time of molecules of the i-th fluorescent component. 

3. a is the structural parameter. 

 

According to the described kinetic types the following fitting models are available for the analysis of the experimental 

correlation functions: 

 Pure diffusion model  

 Triplet-State model  

 Conformational model  

 Protonation model  

 Flow model 

 Custom model 

 

Description of the model types is given below: 

Pure-Diffusion model 

For Pure-Diffusion model [1, 2, 6, 7] kinetic term  kineticsX   in general formula is defined by the following equation: 

  1kineticsX   . 

Pure-Diffusion model properties: 

1. IG type determines how the initial guesses of all model parameters are generated. See list of IG type values for 

details. 

2. ComponentsCount defines number of fluorescent components. 

3. Background correction determines if background correction is taken into account. If this property is true the Data 

Set associated with the model should contain the external parameter BG ratio. 



4. Brightness correction determines if different quantum efficiency of each component is taken into account. See 

brightness correction topic for more details. 

5. Motion type specifies the motion term  motionG   in the model equation (see general formula). 

Pure-Diffusion model parameters: 

1. Ginf is the level of autocorrelation function when    . 

2. N is the average number of fluorescent molecules in the detection volume (exists only if brightness correction is 

not performed). 

3. Fit parameters of selected motion term  motionG  . 

Triplet-State model 

For Triplet-State model [8] kinetic term  kineticsX   in general formula is defined by the following equation: 
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where F
trip

 and T
trip

 are, respectively, the fractional population and relaxation time of the triplet state. 

Triplet-State model properties: 

1. IG type determines how the initial guesses of all model parameters are generated. See list of IG type values for 

details. 

2. ComponentsCount defines number of fluorescent components. 

3. Background correction determines if background correction is taken into account. If this property is true the Data 

Set associated with the model should contain the external parameter BG ratio. 

4. Brightness correction determines if different quantum efficiency of each component is taken into account. See 

brightness correction topic for more details. 

5. Motion type specifies the motion term  motionG   in the model equation (see general formula). 

Triplet-State model parameters: 

1. Ginf is the level of autocorrelation function when    . 

2. N is the average number of fluorescent molecules in the detection volume (exists only if brightness correction is 

not performed). 

3. Ftrip is the fractional population of the triplet state. 

4. Ttrip is the relaxation time of the triplet state. 

5. Fit parameters of selected motion term  motionG  . 

Conformational model 

For Conformational model [3, 4] kinetic term  kineticsX   in general formula is defined by the following equation: 
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where A is the pre-exponential factor, β is the "stretch" parameter, conf is the characteristic time of conformational 

relaxation. 

Conformational model properties: 

1. IG type determines how the initial guesses of all model parameters are generated. See list of IG type values for 

details. 

2. ComponentsCount defines number of fluorescent components. 

3. Background correction determines if background correction is taken into account. If this property is true the Data 

Set associated with the model should contain the external parameter BG ratio. 

4. Brightness correction determines if different quantum efficiency of each component is taken into account. See 

brightness correction topic for more details. 

5. Motion type specifies the motion term  motionG   in the model equation (see general formula). 

Conformational model parameters: 

1. Ginf is the level of autocorrelation function when    . 

2. N is the average number of fluorescent molecules in the detection volume(exists only if brightness correction is not 

performed). 

3. A is the pre-exponential factor. 

4. beta is the "stretch" parameter. 

5. tau is the characteristic time of conformational relaxation. 



6. Fit parameters of selected motion term  motionG  . 

Protonation model 

For Protonation model [5] kinetic term  kineticsX   in general formula is defined by the following equation: 
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where P1 and P2 are the pre-exponential factors, τ1 and τ2 are the decay constants, associated, respectively, with the 

external and internal protonation processes. 

Protonation model properties: 

1. IG type determines how the initial guesses of all model parameters are generated. See list of IG type values for 

details.  

2. ComponentsCount defines number of fluorescent components. 

3. Background correction determines if background correction is taken into account. If this property is true the Data 

Set associated with the model should contain the external parameter BG ratio. 

4. Brightness correction determines if different quantum efficiency of each component is taken into account. See 

brightness correction topic for more details. 

5. Motion type specifies the motion term  motionG   in the model equation (see general formula). 

Protonation model parameters: 

1. Ginf is the level of autocorrelation function when    . 

2. N is the average number of fluorescent molecules in the detection volume(exists only if brightness correction is not 

performed). 

3. P1 is the pre-exponential factor, associated with the external protonation. 

4. P2 is the pre-exponential factor, associated with the internal protonation. 

5. tau1 is the decay constant, associated with the external protonation. 

6. tau2 is the decay constant, associated with the internal protonation. 
7. Fit parameters of selected motion term  motionG  . 

FCS flow model 

For FCS flow model [19] kinetic term  kineticsX   in general formula is defined by the following equation: 
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where  motionG   is the motion term in general formula, fl is the average flow time of the fluorescent particles through 

the detection volume. 

Flow model properties: 

1. IG type determines how the initial guesses of all model parameters are generated. See list of IG type values for 

details. 

2. ComponentsCount defines number of fluorescent components. 

3. Background correction determines if background correction is taken into account. If this property is true the Data 

Set associated with the model should contain the external parameter BG ratio. 

4. Motion type specifies the motion term  motionG   in the model equation (see general formula). 

Flow model parameters: 

1. Ginf is the level of autocorrelation function when    . 

2. N is the average number of fluorescent molecules in the detection volume. 

3. Tfl is the average flow time of the fluorescent particles through the detection volume. 

4. Fit parameters of selected motion term  motionG  . 

Weight factors for FCS analysis are calculated by the software in two ways: 1) accordingly to the algorithm proposed 

in [32] (third method) if auto(cross)correlation function is calculated from the raw data; 2) by standard procedure of 

standard deviations calculation from a number of independent repetitions of the experiment (i.e. from a number of 

auto(cross)correlation curves). 



PCH model 

The PCH model is used to analyze Photon Counting Distribution (PCD). PCD here refers to the data to be analyzed, 

whereas PCH is a commonly used term to specify the method of analysis. The total PCD from a number of molecules 

is calculated by successive convolutions of a single molecule PCD [23, 24, 25]: 
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where Poi(n, ξ) denotes the Poisson distribution with the mean value ξT is the counting time interval, Vref is the 

reference volume and Q is taken so that the product QVref is large enough to completely include the illuminated 

volume. The total distribution P(n) is the weighted average of 
(1) ( , , )p n Q q  convolved M times [25] 
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We use normalization either to the effective volume 2

1 2ref effV V    , ( ) ,k

k
V

PSF d   r r  or on two first moments 

of PSF [40] in order to relate Ni obtained by PCH and FCS. An additional convolution to the background term

( ) ( , )bgP n Poi n T  can be taken in order to account for the background photons ( , ) ( ) ( )bgP n P n P n   . The total 

PCD of a number of independent species is given by a convolution of PCD of each species 

1 1( ) ( , , ) ( , , )n nP n P n N q P n N q   .  

Correction for the brightness profile nonideality can be done either by the use of polynomial approximation or by 

introducing additional fitting parameters Fk defined as the relative difference between the integral k  of the kth power 

of the actual brightness profile function (normalized to unity) and that of its 2D/3D Gaussian (or Gaussian-Lorenzian) 

approximation G k . 

The most practical way to account for diffusion and other time dependent processes like triplet-state relaxation is to 

correct the brightness and number of molecules such that the first and second factorial cumulants of PCD are exact. 

According to this theory one has to calculate the so-called binning correction factor 2 2

0

2
( ) ( ) ( )

T

B T T t g t dt
T

   where 

g(t) is a time dependent term of autocorrelation function in FCS and to correct the brightness and the number of 

molecules in the following form:  

0 2
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( ) ( ),

q q T B T

N N T B T




 

where q(T) and N(T) are apparent parameters of the model dependent on bin time T and q0 and N0 are absolute values 

of brightness and concentration that are independent on T. In general, the binning correction factor can be calculated 

assuming two or even more diffusing components (such correction can be applied to a mixture of species with 

approximately equal brightness values but quite different hydrodynamic radii). For a model with multiple brightness 

components this correction has to be applied independently to each component. Triplet and diffusion characteristics 

can be either different or the same for each brightness component. 

PCH model properties: 

1. IG type determines how the initial guesses of all model parameters are generated. See list of IG type values for 

details. 

2. Afterpulses correction performs correction for afterpulses (accordingly to Palo et al., 2006 [30]). 

3. Dead time correction performs dead time correction (accordingly to Palo et al., 2006 [30]). 

4. Process correction determines if process correction is taken into account. The following correction types are 

available: 

 None, 

 Triplet, 

 Conformation, 

 Protonation. 

5. Motion correction determines if motion correction is taken into account. The following correction types are 

available: 

 None, 

 Free 2D diffusion, 



 Free 3D diffusion, 

 Anomalous 2D diffusion, 

 Anomalous 3D diffusion. 

6. Profile type specifies the type of brightness profile PSF(x,y,z). The following profile types are available: 

 2D Gaussian, 

 3D Gaussian, 

 Gaussian-Lorenzian, squared (to fit two-photon excitation data), not normalized to unity, see notes below, 

 Polynomial (accordingly to Palo et al., 2000 [22]). 

7. Profile correction type specifies the type of brightness profile correction. The following profile correction types 

are available: 

 None, 

 First order (accordingly to Huang et al., 2005 [24]). It is not applicable for the polynomial brightness profile 

approximation. 

 Second order (accordingly to Huang et al., 2005 [24]). It is not applicable for the polynomial brightness 

profile approximation. 

8. Normalization type specifies the type of normalization (scaling). The following normalization types are available: 

 Effective volume, by representation of a number of molecules in the effective volume eff effN CV , i.e. by 

introducing the unit measurement volume Veff = 1, 

 1st and 2nd PSF moments, i.e. by setting 2( ) 1, ( ) 1
V V

PSF d PSF d  r r r r  [22, 40]. 

7. Profile defaults allows to specify default values of brightness profile parameters. Initial guesses for two and more 

component data are calculated assuming these settings. 

8. Parameters Type specifies the type of possible combinations of fit parameters. The following parameter types are 

available: 

 Absolute N and q values, 

 N ratio, 

 q ratio, 

 N and q ratio. 

9. Components Count defines a number of molecular components with different brightness. 

Common PCH model parameters: 

1. Bg is the mean background count rate of detector λ. It defines the sample independent background.  

2. Ni is the mean number of molecules of i-th brightness component. Note, it is the number of molecules in the 

effective volume. For conversion of this value to other types of normalizations, see chapter below. 

3. qi is the mean number of photons detected in a time interval (brightness, cpsm) of i-th brightness component. Note. 

This is an apparent, not true, brightness, which is depend on a type of normalization and profile correction. For 

conversion of this value to other types of normalizations, see chapter below. 

4. Ti is the translational diffusion relaxation time of molecules of the i-th diffusion component (exists only if Motion 

correction property is not set to “None). 

5. a is the structural parameter (exists only if Motion correction property is not set to “None). 

6. Ftrip is the fractional population of the triplet state (exists only if Process correction property is "Triplet State"). 

7. Ttrip is the relaxation time of the triplet state (exists only if Process correction property is "Triplet State"). 

8. Tdt is the dead time (exists only if Dead time correction property is "true"). 

9. Pap is the afterpulsing probability (exists only if Afterpulses correction property is "true"). 

10. N2/N1 is the concentration ratio (exists only if Parameters Type property is set to either “N ratio” or “N and q 

ratio”). 

11. q2/q1 is the brightness ratio (exists only if Parameters Type property is set to either “N ratio” or “N and q ratio”). 

12. Fit parameters of selected profile. 

Supported approximations of PSF:  

2D Gaussian profile 
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3D Gaussian profile 
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Gaussian-Lorenzian squared profile 
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Note, we use here the not normalized to unity PSF, i.e. with a factor 
2

0 4 /B  . It leads to different brightness value 

because B0 becomes confounded with q. It is not a problem if one is not interested in the absolute values of q. If the 

normalized to unity GL profile is used: 

 
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comparison of the estimated values returned by methods which use different PSF, one can easily convert the value of 

q using the relation 24norm not normq q  . See chapter below how to calculate the true brightness. 

Polynomial profile 

PSF(r) is approximated by the exponential function of one argument with polynomial transformation of the unit of 

volume (further simply FIDA-like polynomial approximation) [21, 22, 40] 

0( ) xPSF PSF er , 
2 3

0 1 2( )d dx A x a x a x  r , 

where a1, a2 are adjusted instrumental parameters and PSF0 is the value of PSF(r) at r equal to 0. PSF0 and A0 are 

calculated from the system of normalization equations:  
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Solution of this system yields 0 8PSF u v , 
2

0 8A v u , where 1 22 6 1u a a    and 1 22 3 2v a a   .  

Application of this normalization changes the definition of number of molecules and brightness respectively: 

2

1 2i i i effN c c V   , 2 1 2i true i true iq q q    . 

Single molecular PCD takes the form: 
(1) 2 30

0 1 2

0

( , ) ( , )( )xA
p n q Poi n qPSF T e x a x a x dx

Q



   . In this definition, 

results of PCH analysis with the polynomial profile are equivalent to results of FIDA. 

Specific PCH model parameters: 

1. a1 is the brightness profile parameter. 

2. a2 is the brightness profile parameter. 

Out-of-focus correction of 2D/3D Gaussian and Gaussian-Lorenzian profiles 

Out-of-focus correction is performed by introduction of additional fitting parameters Fk defined as [23, 24]: 

( ) , 0k k G k G kF k     . 

In the most cases only the first order correction (all Fk equal to zero except F1) is sufficient to get the best fit to the 

experimental data. F1 can be treated as an out-of-focus emission ratio. The second order correction (F1 and F2 are 

different from zero) can be also applied.  

Single molecule PCD with out-of-focus correction [24] takes the form (written for the normalization to the effective 

volume): 
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whrere 
(1) ( , , )p n Q q  is the single molecular PCD for pure Gaussian (or squared Gaussian-Lorenzian) approximation 

and 
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k k  (d is the dimensionality) for the case of 2D/3D Gaussian approximation and 
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
  for the 

case of not normalized to unity Gaussian-Lorenzian approximation. Note, factor 2  appears here (in comparison with 

the original version [24]) due to normalization to the effective volume.  

The first-order correction accounts for the emission from additional (out of-focus) molecules similarly to the 

background uncorrelated emission that is also independent from the observation profile shape. It means that the first-

order out-of-focus correction works similarly to correction for background photons. Consequently, the larger value of 

the out-of-focus correction parameter F1 can compensate for the background (e.g. after fixing λ to zero) and, 

conversely, the larger value of λ can completely compensate for the out-of-focus signal (after fixing F1 to zero). In 

spite of the possibility to omit the first-order correction term we prefer to keep it. It standardizes the theory and enables 

an easier comparison of fit parameters between different analysis methods. In addition, there is a clear difference 



between two sources of ‘background’ photons. The first source is the sample-independent background, e.g. noise of 

detector, etc, and the second source is the sample-dependent (depends on both concentration and brightness of the 

sample, see equation above) out-of-focus signal. 

Specific PCH model parameters: 

1. Fc1 is first order correction parameter. 

2. Fc2 is second order correction parameter. 

Afterpulses and dead time correction is performed accordingly to the algorithm described in [30]. Correction for 

afterpulses is done by the following formula  
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where pap is the afterpulsing probability and P0(n) is the ideal PCD (i.e. without correction).  

Correction for dead time is done by the following formula  
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where τdt is the detector dead time and P0(n) is the ideal PCD (i.e. without correction).  

Actually, PCH model is calculated using several algorithms. One realization of PCH model (is used for a case of 

relatively low product of q T) is based on the efficient algorithm that uses generation function (GF) approach and 

Taylor expansion of the exponent under the integral in the single-molecular PCD [29]. Description of the model given 

bellow is presented for the case of Gaussian brightness profile. The generation function of probability to detect n 

photons P(n) can be written as [29] 
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where i is an index of molecular species, ci is the mean number of molecules in an unit volume (concentration), qi is 

the specific brightness of molecules (in counts per second per molecule), ( )k

Gk G
V

PSF d   r r , G denotes Gaussian 

approximation and  is the mean background count rate of the detector. It is assumed that the contribution of each 

single molecule to the recorded photon trace is independent and the emission intensity is constant during the counting 

time interval T. 

P(n) is obtained by the Fast Fourier Transform (FFT) of the characteristic function, which can be obtained from GF 

by substituting  by the complex exponent  
1( ) ( ( ))iP n FFT G e  , 0,1, , 1 , 2n m n m   K . 

All Gk  can be calculated as    
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After normalization to the effective volume 2

1 2/effV    conventionally used in FCS we arrive at 

 
2

2 3 2
11

1 (1 )1
( ) exp ( 1)

(1 ) (2 ) !

k k k

i k

i

i k

q T FF
G T N

F k k


  





   
   

  
  , 

where Ni is a mean number of molecules in the effective volume and we used following relations 

/i i effc N V , 2

1 2(1 ) (1 )eff eff GV F V F   , 3/ 2 2

0 0eff GV z  . 

After introducing brightness ratio 1q i ir q q  and concentration ratio 1N i ir N N  one arrives at 
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where M is a number of components. Last equation allows fitting brightness and concentration ratios instead of 

brightness and concentration of each species. It also opens a possibility to set reasonable constraints on brightness and 

concentration ratios thus making analysis more robust. Any combinations of absolute fit parameter values and their 

ratios are possible in FFS DP. Since our realization of this algorithm works well only for product q and T up to 20 

(often problems can already arise when this product is less than 20, depending on the brightness profile approximation 

and correction), the algorithm of PCH, described before, is used in this case. 

Weighting factors are calculated as standard deviations of Binomial distribution given by 
* *( )(1 ( ))i MP i P i   , 

where M is the total number of bins and P*(i) is the measured PCD. Because M is usually large, Binomial distribution 

is approximated well by normal distribution and therefore the application of reduced χ2 criterion is justified. 

FFC model 

The FFC model is used to analyze a set of Fluorescence Factorial Cumulants [15, 20]. Factorial cumulants Kk are 

calculated from the experimental data by formulas: 
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where P*(n) is a measured photon counting distribution i.e. probability to detect n photons within a counting time 

interval T, the angular brackets indicate averaging with the set of probabilities P*(n). 

In general FFC model is defined by the following formula: 
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where qi is the mean number of photons (expressed in counts per second per molecule) detected in a time interval T, 

ci is the concentration of molecules of the i-th component, λ is the mean background count rate of the detector, 
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is the diffusion correction term. 2( , , )kG  K  is the normalized correlation function of kth order [20]. For the limit of 

short bin times it takes the form 

( , ) k

k diff iT T  . 

We use normalization to the effective volume 2

1 2/effV    in order to relate Ni obtained by both FFC and FCS. After 

normalization one gets 
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Factor 2 that appears in Eq. 1 is due to this type of normalization. -factors are defined as 1k k   . 

To correct for deviations of the actual observation profile from its ideal approximation three different approaches can 

be used in FFC (see Profile type property of the model): 

1) -factors (3, 4, ...) can be fitted during the analysis (applicable only in the global analysis with linking all fitted -
factors) [20]; 

2) FIDA-like polynomial profile [21, 22] can be used for the approximation of the actual PSF [39]; 

3) out-of focus corrected 2D/3D Gaussian [23, 24] or squared (not normalized to unity) Gauss-Lorenzian profiles can 

be used for the approximation of the actual PSF [39]. 

In the case of out-of-focus correction general FFC formula becomes  
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where q becomes different from the true brightness is the correction is applied, see chapter below, Fk are correction 

parameters defined as relative difference between integral of the k-th power of the actual observation profile  and 

that of its approximation ( ) , 0k k G k G kF k     . In the most cases just first order correction is needed 

(all Fk = 0 except F1), and sometimes second order correction (all Fk = 0 except F1 and F2) is necessary to get best fit 

to the experimental data.  

The first-order correction accounts for the emission from additional (out of-focus) molecules similarly to the 

background uncorrelated photons. It means that the first-order out-of-focus correction works similarly to correction 

for background photons. Consequently, the larger value of the out-of-focus correction parameter F1 can compensate 

for the background (e.g. after fixing λ to zero) and, conversely, the larger value of λ can completely compensate for 

the out-of-focus signal (after fixing F1 to zero). The first source is the sample-independent background, e.g. noise of 

detector, etc, and the second source is the sample-dependent (depends on both concentration and brightness of the 

sample, see equation above) out-of-focus signal. 
For the polynomial profile the general FFC model takes the form 
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where 
2 4

0 0 1 2(2 6 ) /k

k A PSF a k a k k    , 
0 8PSF u v , 

2

0 8A v u  and 
1 22 6 1u a a   , 

1 22 3 2v a a   . A0 

and PSF0 are chosen so that the normalization conditions 
1 2 1    are satisfied. Application of different 

normalization conditions change the values of q and N. For a conversion of q and N between different types of 

normalization see chapter below.  

If a number of factorial cumulants used for analysis is equal to a number of fitted parameters, the exact solution is 

available that leads to zero (or very close to zero) 
2  value. The reduced 

2 that is the measure of adequacy of the 

fit model to the experimental data can be calculated only if number of factorial cumulants used for analysis is more 

than number of fitted parameters plus one. 

Weight factors of the cumulants are calculated by the software in two ways: 1) the first five weighting factors are 

calculated according to formulas given in [15] (moments of moments technique) if cumulants are calculated from the 

raw data (weighting factors of higher order cumulants are set to zero; 2) all weighting factors are calculated by standard 

procedure of standard deviations calculation from a number of independent repetitions of the experiment. 

Note: if standard deviations are calculated from the raw data, only first five cumulants are actually analyzed. Higher 

order cumulants do not participate in the analysis because their standard deviations equal to zero. To analyze higher 

order cumulants one either has to choose the second way of the standard deviations calculation or switch off the 

calculation of standard deviations while calculating cumulants. 

FFC model parameters: 

1. Bg is the mean background count rate of detector λ. It defines the sample independent background. 

2. Nj is the mean number of molecules of j-th brightness component. Note, it is the number of molecules in the 

effective volume. For conversion of this value to other types of normalizations, see chapter below. 

3. qj is the mean number of photons detected in a time interval (brightness, cpsm) of j-th brightness component. Note. 

This is an apparent, not true, brightness, which is depend on a type of normalization and profile correction. For 

conversion of this value to other types of normalizations, see chapter below. 

4. Ti is the translational diffusion relaxation time of molecules of the i-th diffusion component (exists only if Diffusion 

correction property is "true"). 

5. a is the structural parameter (exists only if Diffusion correction property is "true" and Profile type property is 

"3D Gaussian"). 

6. Fit parameters of selected profile. 

FFC model properties: 

1. IG type determines how the initial guesses of all model parameters are generated. See list of IG type values for 

details. 

2. ComponentsCount defines a number of molecular components with different brightness. 

3. Motion correction determines if motion correction (due to diffusion) is taken into account. 

4. Profile type specifies the type of PSF(x,y,z). The following profile types are available: 

 2D Gaussian, 

 2D Gaussian  1-st corr., 

 2D Gaussian 2-nd corr., 

 3D Gaussian, 

 3D Gaussian 1-st corr., 

 3D Gaussian 2-nd corr., 

 3D Gaussian fitted, 

 Squared Gaussian-Lorenzian, 

 Squared Gaussian-Lorenzian 1-st corr., 

 Squared Gaussian-Lorenzian 2-nd corr., 

 Polynomial, 

2D Gaussian profile 
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-factors are calculated by 
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3D Gaussian profile 
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-factors are calculated by 
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k k  , where d is the dimensionality (d=3). 



3D Gaussian fitted profile 
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-factors for two first cumulants are calculated as 
1 2 1 2 2   , 

2 2 1 8   . All other -factors (actually products 

23, 24, …) are fit parameters.

Gaussian-Lorenzian squared profile 
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Note, we use here the not normalized to unity PSF, i.e. with a factor 
2

0 4 /B  . It leads to different brightness value 

because B0 becomes confounded with q. It is not a problem if one is not interested in the absolute values of q. If the 

normalized to unity GL profile is used: 
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comparison of the estimated values returned by methods which use different PSF, one can easily convert the value of 

q using the relation 24norm not normq q  . For calculation of true brightness see chapter below. 

-factors are calculated by  
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For comparison, one gets 
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   for the case on normalized to unity PSF. 

First order correction (2D Gaussian  1-st corr.; 3D Gaussian 1-st corr.; Squared Gaussian-Lorenzian 1-st corr.) 

all Fk = 0 except F1 

Second order correction (2D Gaussian 2-nd corr.; 3D Gaussian 2-nd corr.; Squared Gaussian-Lorenzian 2-nd 

corr.) 

all Fk = 0 except F1 and F2 

Specific FFC model parameters: 

1. Fc1 is first order correction factor. 

2. Fc2 is second order correction factor. 

Polynomial profile 

PSF(r) is approximated by an exponential function of one argument with polynomial transformation of unit of volume 

[21, 22] 
2 3

0 1 2( )d dx A x a x a x  r ,  0ln ( )x PSF PSF r , 

where a1, a2 are adjusted instrumental parameters and PSF0 is the value of PSF(r) at r equal to 0. PSF0 and A0 are 

calculated from the system of normalization equations:  
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Solution of the system yields 0 8PSF u v , 
2

0 8A v u , where 1 22 6 1u a a    and 1 22 3 2v a a   . All 

geometric factors can be calculated as follows 
2 4

0 0 1 2(2 6 ) /k

k A PSF a k a k k    . 

Specific FFC model parameters: 

1. a1 is the brightness profile parameter. 

2. a2 is the brightness profile parameter. 

Monomer-N-mer FFC model 

The Monomer-N-mer FFC is a modification of FFC model designed to analyze two component sample with known 

brightness ratio. For Gaussian profile with out-of-focus correction it is defined by the following formula (F1 = F2 = 0 

if out-of-focus correction is not applied): 
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where r is the brightness ratio. For polynomial profile it takes the form 
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Monomer N-mer FFC model properties: 

Properties of the model are similar to FFC model except of additional property Brightness ratio. Brightness ratio 

property is expressed in real numbers, not only integers. 

Monomer N-mer FFC model parameters: 

1. Bg is the mean background count rate of detector λ. 

2. N_monomer is the mean number of monomer molecules in the effective volume. 

3. N_n-mer is the mean number of N-mer molecules in the effective volume. 

3. q is the mean number of photons detected in a time interval (brightness, cpsm) of monomer. Becomes a function of 

Fi, see chapter below. 

4. Ti is the translational diffusion relaxation time of molecules of the i-th diffusion component (exists only if Diffusion 

correction property is "true"). 

5. a is the structural parameter (exists only if Diffusion correction property is "true" and Profile type property is 

"3D Gaussian"). 

6. Fit parameters of selected profile. 

 

Conversion formulas for N and q [42] 
Note that, FIDA, PCH and FCA are mathematically equivalent and, for the noise-free data, must result in exactly the 

same estimates of the model parameters. However, the application of different brightness profile approximations and 

normalizations in PCH and FIDA leads to different measurement units of the concentration and brightness. Brightness 

estimated using different methods may differ more than four times(!). It does not introduce any errors in the analysis 

when scientists are interested in relative changes of concentration and brightness in measurements performed at same 

experimental conditions. However, in PCH with out-of-focus correction a linear dependence of the brightness on the 

out-of-focus correction parameters is observed. Change of the measurement conditions may result in significant 

change of the out-of-focus correction parameters and consequently, estimated brightness.  

The application of the different types of normalizations and brightness profile approximations leads to different values 

of brightness and number of molecules in the observation volume. Fortunately, the correction for an out-of-focus 

emission does not affect the value of the number of molecules in the effective volume. However, the estimators of 

brightness are different, depending on the correction order. Therefore, when a correction is applied (F1, F2  0), the 

estimated brightness represents, so called, apparent brightness q, which must be recalculated into the “true” one 

2 1(1 ) (1 )trueq q F F   . 

While normalization to the observation volume VPSF = ( )
V

B dV r  both PSF PSFN cV  and q depend on the correction 

parameters and hence they both vary from one type of correction to another  

1 2 2(1 ) ((1 ) )PSFN F N F    . 

While normalization on two first moments of brightness profile (FIDA-type normalization) the normalization 

conditions can be realized by a variable substitution 2

1 2i i i effN c c V   , 2 1 2i truei trueiq q q    . Therefore, we 

still estimate the number of molecules in the effective volume but  

2trueq q  . 

In contrast to PCH and FCA with out-of-focus correction, FIDA-type normalization does not exhibit dependence of 

N and q on correction parameters, because of the chosen normalization. Two normalization conditions allow to 

simultaneously determine two unknown parameters: the size of the observation volume and the value of the brightness 

profile in the focus. 

Relations between brightness at normalization on the effective volume and normalization on two first moments of 

brightness profile are given below (we added subscripts FIDA and eff to distinguish both estimates) 

2 2 1(1 ) (1 )FIDA effq q F F   . 

Since at normalization on the effective volume number of molecules are the same for all methods (FCS, PCH, FIDA, 

FCA, …), used in FFS Data Processor and it does not depend on the profile correction parameters, we prefer to use 



namely the normalization on the effective volume instead of the normalization to the observation volume VPSF. It 

allows the global analysis of all these methods with direct linking of N. 

Not also, that we use here the not normalized to unity squared Gaussian-Lorenzian profile (with 
2 2(0) 4 /GLPSF  ). 

It leads to different brightness value because 
2 (0)GLPSF  becomes confounded with q. If one is interested in direct 

comparison of the estimated brightness returned by their own realization of the method which uses the normalized to 

unity PSF, one can easily convert the value of q using the relation 2 2

24
GL norm GL not norm

q q  . If the normalization on 

two first moments of brightness profile is applied, the true brightness should be calculated using the correct gamma 

factor 22true GL
q q  , 2 22

3

4GL



 , not 2 2

3

16GL
   derived for the case on normalized to unity squared Gaussian-

Lorenzian PSF. 

 

Gaussian model 

Gaussian model is used to analyse coincidence values histogram [16] and photon counting distribution. The model is 

based on the Gaussian distribution function 
2
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
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where m is the mean,  is the standard deviation. 

Gaussian model properties: 

1. IG type determines how the initial guesses of all model parameters are generated. See list of IG type values for 

details. 

Gaussian model parameters: 

1. M is the mean of the Gaussian distribution. 

2. Sigma is the standard deviation of the Gaussian distribution. 

 

Poissonian model 

Poissonian model can used to analyse photon counting distributions  

( )
!

x

f x e
x

   

where λ is the mean of Poisson distribution and x must be integer. 

Poissonian model properties: 

1. IG type determines how the initial guesses of all model parameters are generated. See list of IG type values for 

details. 

Poissonian model parameters: 

1. lambda is the mean of Poisson distribution. 

 

Brightness vs. time model 

The Brightness vs. time model is used to analyze brightness versus bin time dependence that can be made from a 

number of fitted photon counting distributions calculated at different bin times. This model allows to accomplish 

PCMH analysis. It is defined by the following formula: 

     
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BG kinetics motionq T q X T t X t G t dt
T

  , 

where q is the true brightness, Xbg, Xkinetic(t) and Gmotion(t) are background correction term, process and motion terms 

of FCS model. 

Brightness vs. time model properties: 

1. Background correction determines if background correction is taken into account. If this property is true the Data 

Set associated with the model should contain the external parameter BG ratio. 

2. Process type specifies the process term Xkinetic(t). 

3. Components Count defines a number of molecular components with equal brightness. 



Brightness vs. time model parameters: 

1. Fi is the contribution of molecules of the i-th fluorescent component.  

2. Ti is the translational diffusion relaxation time of molecules of the i-th fluorescent component. 

3. a is the structural parameter. 

4. q is the mean number of photons detected in a time interval (brightness, cpsm). 

Concentration vs. time model 

The Concentration vs. time model is used to analyze concentration versus bin time dependence that can be made from 

a number of fitted photon counting distributions calculated at different bin times. This model allows to accomplish 

PCMH analysis. It is defined by the following formula: 
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where N is the true number of molecules in the effective volume, Xbg, Xkinetic(t) and Gmotion(t) are background correction 

term, process and motion terms of FCS model. 

Concentration vs. time model properties: 

1. Background correction determines if background correction is taken into account. If this property is true the Data 

Set associated with the model should contain the external parameter BG ratio. 

2. Process type specifies the process term Xkinetic(t). 

3. ComponentsCount defines a number of molecular components with equal brightness. 

Concentration vs. time model parameters: 

1. Fi is the contribution of molecules of the i-th fluorescent component.  

2. Ti is the translational diffusion relaxation time of molecules of the i-th fluorescent component. 

3. a is the structural parameter. 

4. N is the mean number of molecules. 

Custom model 

Custom model is designed to perform the data analysis with user defined mathematical description. The special Script 

programming language was developed for writing the user-defined models. Before constructing new model some fit 

parameters have to be created. The names assigned to the parameters can then be used in the model script.  

Custom model properties: 

1. IG type determines how the initial guesses of all model parameters are generated. See list of IG type values for 

details. 

2. Configuration provides access to Custom model configuration dialog box. This dialog box can be accessed by 

pressing button located on the right side of the property value box. 

3. Subtype provides quick selection of the needed custom model from the database. 

Custom model parameters: 

The parameters are defined by user. To learn more about custom models see “Custom model” section bellow. 



Custom model 

Script programming language 

The following topics provide a formal definition of Script programming language, which is used for creating custom 

model scripts: 

 - Lexical elements  

 - Whitespace 

 - Tokens 

 - Variables  

 - Expressions 

 - Built in functions  

Whitespace 

Whitespace is the collective name given to spaces (blanks), horizontal and vertical tabs and newline characters. 

Whitespace can serve to indicate where tokens start and end.  

For example, the following two sequences are lexically equivalent: 

 var: a, x, y; 

 a = x+y; 

 

 and 

 

 var: 

     a, x, y; 

 a  = 

    x+y; 

Tokens 

Tokens are word-like units recognized by a language. Script programming language recognizes five classes of tokens. 

Here is the formal definition of a token: 

 keyword  

 identifier  

 operator  

 built in function 

 punctuator  (also known as separator) 

As the source code is scanned, tokens are extracted in such a way that the longest possible token from the character 

sequence is selected. For example, external would be parsed as a single identifier, rather than as the keyword extern 

followed by the identifier al. 

Keywords 

Keywords are words reserved for special purposes and must not be used as normal identifier names. Keyword var: is 

used to declare new variables. 

Example: 
var: x, y, z; 

In this example three variables (x, y, and z) are declared. 

Variable identifiers 

Identifiers are arbitrary names of any length given to variables. 

Naming and length restrictions 
Identifiers can contain the letters a to z and A to Z, and the digits 0 to 9. There is only one restriction: the first character 

must be a letter. 

Case sensitivity 
Script programming language identifiers are case sensitive, so that Sum, sum and suM are distinct identifiers. 

Uniqueness  

Although identifier names are arbitrary (within the rules stated), errors are generated if the same name is used for 

more than one identifier within the script. 

Variables 

Variable is a named storage location that can contain data that can be modified during script execution. Each variable 

has a name that uniquely identifies it within script. The variable names are sometimes referred to as  identifiers 

.Variables can be of three types: 

 external variables - fit parameters, time and external parameters.   

 internal variables - can be defined by user in the script. 



 result variable - contains script execution result.  

Internal variables declaration 
Internal variables declaration is a list of variable identifiers. The declaration begins with keyword var:. The identifiers 

are separated by commas and the list is terminated by a semicolon. 

Example: 
var: var1, var2, var3, ...; 

where var1, var2, var3, ... are any sequence of distinct  identifiers . 

Operators 

Operators are  tokens  that trigger some computation when applied to variables and other objects in an expression. 

The following operators are available in the  Script programming language: 

* Operator  

 / Operator  

 + Operator  

 - Operator  

= Operator 

= Operator 

This operator assigns the value of an expression to an internal variable.  

Syntax 
varname = expression 

The = operator syntax has following parts: 

Part Description 

varname Required; any internal variable. 

expression Required; any numeric expression .  
 

Example: 
var: Var, Var1, Var2; 

Var1 = 5; 

Var2 = Var1+10; 

Var = Var1 + Var2; 

+ Operator 

This operator is used to sum two numbers. 

Syntax 
result = expression1+expression2 

The + operator syntax has following parts: 

Part Description 

result Required; any internal variable . 

expression1 Required; any numeric expression .  

expression2 Required; any numeric expression. 

 

Example: 
var: MyNumber, Var1, Var2; 

MyNumber = 2 + 2; ' Returns 4. 

MyNumber = 4257.04 + 98112; ' Returns 102369.04. 

 

Var1 = 34; Var2 = 6; ' Initialize variables. 

MyNumber = Var1 + Var2; ' Returns 40. 

- Operator 

This operator is used to find the difference between two numbers or to indicate the negative value of a  numeric 

expression . 

Syntax 1 
result = expression1-expression2 

Syntax 2 
-expression 

The - operator syntax has following parts: 

Part Description 

result Required; any internal variable . 

expression1 Required; any numeric expression .  

expression2 Required; any numeric expression. 

expression Required; any numeric expression. 



 

Remarks 

In Syntax 1, the - operator is the arithmetic subtraction operator used to find the difference between two numbers. 

In Syntax 2, the - operator is used as the unary negation operator to indicate the negative value of an expression. 

Example: 
var: MyResult, MyVar; 

MyResult = 4 - 2; ' Returns 2. 

MyResult = 459.35 - 334.90; ' Returns 124.45. 

 

MyVar = 2; 

MyResult = -MyVar; ' Returns -2; 

* Operator 

This operator is used to multiply two numbers. 

Syntax  
result = expression1*expression2 

The * operator syntax has following parts: 

Part Description 

result Required; any internal variable . 

expression1 Required; any numeric expression .  

expression2 Required; any numeric expression. 

Example: 
var: MyValue; 

MyValue = 2 * 2; ' Returns 4. 

MyValue = 459.35 * 334.90;  ' Returns 153836.315. 

/ Operator 

This operator is used to divide two numbers. 

Syntax  
result = expression1/expression2 

The / operator syntax has following parts: 

Part Description 

result Required; any internal variable . 

expression1 Required; any numeric expression .  

expression2 Required; any numeric expression. 

Note: expression2 must be nonzero expression2 = 0 results in a runtime error. (You can't divide by zero.) 

Example: 
var: MyValue; 

MyValue = 10 / 4; ' Returns 2.5. 

MyValue = 10 / 3; ' Returns 3.333333. 

Built in functions 

Built in functions are used to perform mathematical calculations. 

The following functions are available in the Script programming language: 

abs  acos  asin  atan  cos erf erfc  exp 

fact Gamma  log  log10 logGamma  pow  

sin  sqrt  tan 

abs 

Syntax 
abs(x); 

Description 
Returns the absolute value of a number. 

Return Value 
abs returns the absolute value of x. 

acos 

Syntax 
acos(x); 

Description 
Calculates the arc cosine. 



Arguments to acos must be in the range -1 to 1. Otherwise a runtime error will occur. 

Return Value 
acos of an argument between -1 and +1 returns a value in the range 0 to pi. 

asin 

Syntax 
asin(x); 

Description 
Calculates the arc sine. 

Arguments to asin must be in the range -1 to 1. Otherwise a runtime error will occur. 

Return Value 

asin of an argument between -1 and +1 returns a value in the range -pi/2 to pi/2. 

atan 

Syntax 
atan(x); 

Description 
Calculates the arc tangent. 

Return Value 

atan of x returns a value in the range -pi/2 to pi/2. 

cos 

Syntax 
cos(x); 

Description 

Calculates the cosine of a number. 

The angle is specified in radians. 

Return Value 

cos returns a value in the range -1 to 1. 

exp 

Syntax 
exp(x); 

Description 

Calculates the exponential e to the x. 

Return Value 

exp returns e to the x. 

The constant e is approximately 2.718282. If the value of x exceeds 709.782712893, a runtime error occurs.  

 

Note: The exp function complements the action of the log function and is sometimes referred to as the antilogarithm. 

log 

Syntax 
log(x); 

Description 

Calculates the natural logarithm of x. 

If the argument x passed to this function is 0 or less than 0, runtime error occurs. 

Return Value 

On success, log returns the value calculated ln(x). 

log10 

Syntax 
log10(x); 

Description 

Calculates the base ten logarithm of x. 

If the argument x passed to this function is 0 or less than 0, runtime error occurs. 

Return Value 
On success, log10 returns the calculated value log base ten of x. 

pow 

Syntax 
pow(x, y); 

Description 



Calculates x to the power of y. 

If the result of this function is more than 1.79∙10308, the overflow runtime error will occur. If the argument x passed 

to pow is real and less than 0, and y is not a whole number, or you call pow(0,0),  runtime error will occur. 

Return Value 

On success, pow returns the value calculated of x to the power of y. 

sin 

Syntax 
sin(x); 

Description 

Calculates the sine of a value. 

The angle is specified in radians. 

Return Value 

sin returns a value in the range -1 to 1. 

sqrt 

Syntax 
sqrt(x); 

Description 

Calculates the positive square root. 

If x is positive, the result is positive. If x is negative, runtime error will occur. 

Return Value 

On success, sqrt returns the square root of x.  

tan 

Syntax 
tan(x); 

Description 

Calculates the tangent. 

Angles are specified in radians. 

Return Value 

tan returns the tangent of x,  sin(x)/cos(x) . 

fact 

Syntax 
fact(x); 

Description 

Calculates the factorial of x rounded to the nearest lesser integer. 

If x is negative, runtime error will occur. 

If the result of this function is more than 1.79∙10308, the overflow runtime error will occur. 

Return Value 

On success, fact returns the factorial of x.  

erf 

Syntax 
erf(x); 

Description 

Calculates the error function of x 
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Return Value 

erf returns the error function of x.  

erfc 

Syntax 
erfc(x); 

Description 

Calculates the complementary error function of x,      
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Return Value 

erfc returns the complementary error function of x.  



Gamma 

Syntax 
Gamma(x); 

Description 

Calculates the gamma function of x 
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Return Value 

Gamma returns the gamma function of x.  

logGamma 

Syntax 
logGamma(x); 

Description 

Calculates the natural logarithm of the gamma function of x. 

Return Value 

logGamma returns the natural logarithm of the gamma function of x.  

Punctuators 

The Script programming language punctuators (also known as separators) are: 

( ) 

,   

;   

Parentheses 

There are two cases when open and close parentheses ( ) are used: 

 to indicate function calls and function parameters: 

Example: 
func(); /* function call, no arguments */ 

 to group expressions and change operator precedence: 

Example: 

d = c * (a + b); /* override normal precedence */ 

Comma 

The comma (,) punctuator is used for: 

 separation of the elements of a function argument list: 

Example: 
func(i, j); /* call function with two arguments */ 

 separation of the different variables while making variable declaration: 

Example: 
var: x, y, z; 

Semicolon 

The semicolon (;) is a statement terminator. Any legal Script programming language expression is followed by a 

semicolon. 

Numeric expression 

Any expression that can be evaluated is a number. Elements of an expression can include any combination of variables, 

built in functions and operators that result in a number. 

Expression 

An expression is a sequence of operators, operands, and punctuators that specifies a computation. 

Syntax 

variable part =  numeric expression ; 

Where variable part is any defined internal variable. 

 

Note: The script must contain at least one expression with the result variable. 



Methods 

Global fit 

The parameters of the models can be estimated by a global fitting procedure, based on the Marquardt-Levenberg non-

linear method of least squares [9, 10]. In the global analysis, several measured and/or simulated characteristics are 

combined and simultaneously fitted. Certain parameters can be linked. The values of parameters linked together are 

kept equal to each other. Each parameter can be fixed into the predefined value. For each parameter the range of 

admissible values can be set by defining the constraints. The global 2 criterion is used as a target criterion. Local 2 

criterion values of each analyzed characteristic can be inspected by correspondent property of the Dataset (Local fit 

criterion). Characteristics of different types (i.e. autocorrelations, photon counting distributions and fluorescence 

cumulants) can by analyzed together globally if there is a possibility to link some parameters of the corresponding 

models (f. e. number of molecules N in FCS, PCH and FFC models). To make it possible we apply normalization to 

the effective volume for all these models. 

Sequential fit 

The parameters of the models can be estimated by a sequential fitting procedure, based on the Marquardt-Levenberg 

non-linear method of least squares [9, 10]. In the sequential analysis, several measured and/or simulated characteristics 

are fitted one by one. Each parameter can be fixed into the predefined value. For each parameter the range of 

admissible values can be set by defining the constraints. Local 2 criterion values of each analyzed characteristic can 

be inspected by corresponding property of the Dataset (Local fit criterion). 

Quality of fit and optimization 

The quality of fit is judged by 2 criterion and visual inspection of the residuals between experimental and fitted 

curves. 2 criterion, which is a sum of squared weighted differences of an experimental DE(i) and theoretical DT(i,a) 

data, i = 1,…,N is defined by the formula: 
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where a is a vector of the unknown model parameters, N is the number of data points, m is a number of fitted 

parameters and w(i) is the weighting factor (inverse value of  the data point variance). 

Global analysis of experimental data obeying different functional forms may result in overestimation (or 

underestimation) of some model parameters, if appropriate weighting factors are not applied to each data point. This 

is especially important when the number of data points in these functions is quite different, for instance the ACF 

usually has 175 experimental data points versus only 10-20 data points in PCD. Such difference in number of data 

points leads to a significant difference in the number of degrees of freedom corresponding to each analyzed curve. 

Thus, the standard global χ2 criterion (1) becomes relatively insensitive to small deviations between the measured and 

model-generated curves that have lower number of data points. To avoid this problem it is necessary to take into 

account the specific weight of each individual curve that participates in the global analysis. It can be done if 2 is 

modified in the following way 
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analyzed curve to the value of the global χ2 is made equal by dividing the sum in brackets by the corresponding number 

of degrees of freedom (thus obtaining the local χ2) and finally multiplying the total sum of the local χ2 by the average 
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FFS DP supports both versions of the target criteria. 

 

There are many various optimization algorithms, developed for the minimization of the criterion function 2 [33, 34]. 

These algorithms are usually based on the iterative searching, when, starting from a priory chosen initial guesses, a 

new set of parameters is generated after the comparison of the criterion on the current and previous iterations. The 

search stops when either the value of criterion or the values of parameters do not change more than a priory chosen 

threshold, or number of iterations exceeds some critical value. The implementations of the algorithms differ in a way 

of the generation of a new set of parameters. There are algorithms that optimize only one solution as well as some 

solution-population based methods that optimize a number of possible solutions simultaneously. 



One of the most wide-spread and rigorous iterative algorithms is Marquardt non-linear least-squares algorithm [9, 35, 

36]. The idea consists of the linearization of the model in a truncated Taylor series in order to make use of linear least-

squares analysis, and attain the desired minimum value of 2 criterion by an iterative sequence of calculations. 

The nonlinear theoretical model function ( , )TG i a is linearized by the expansion in a truncated Taylor series near the 

vector of initial guesses a0:  
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where unknown coefficients 
1, , ma a K  are corrections to the parameters 

0 0

1 , , ma aK , and are assumed to be small 

enough to expand ( , )TG i a  in a Taylor series and to truncate it after the first-order terms. Eq. 2 is the equation of 

linear regression with respect to the coefficients 
1, , ma a K . These coefficients can be found by the linear least 

squares method, applied directly to Eq. 2, as the solution of a set of linear algebraic equations  
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After substituting Eq. 1 into Eq. 3, one obtains:  
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Introducing weighted residuals  ( ) ( ) ( ) ( , )E TE i w i G i G i  0
a , set 4 can be rewritten as: 
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Once the vector of coefficients 1, , ma a K  is obtained from the set 5, a new realization of the vector a can be 

calculated:  

 0 , 1,...,j j ja a a j m    (6) 

The improved estimate of ja  replaces 0

ja  in Eq. 2 and iteration starts again. 

Marquardt [36] had developed a method that exhibited a gradient like search direction when far from the minimum 

and then moved smoothly into the analytical method near the minimum. The method improves the conditioning of the 

matrix of partial derivatives  
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The off diagonal elements of Eq. 7 are left unchanged but the diagonal elements are redefined as follows: 

 (1 ) , 1, ,ii iib b i m   K  (8) 

If   = 0, the analytical solution is provided by Eq. 7. If   is large, the off diagonal elements ( )ijb i j  become 

insignificant compared to the diagonal elements. The search direction is then along the path of steepest descent or the 

gradient method. 

The Marquardt method adjusts   to ensure that after each iteration 
2  decreases;   is reduced at each iteration as 

long as 
2  decreases. If the solution causes 

2  to increase, however,   is increased. In this manner, failure of the 

analytical-like solution causes   to increase, which makes the solution more steepest-descent-like until 
2 is 

reduced. As the minimum is approached, however, the analytical solution usually becomes more accurate and   

approaches zero. 

The covariance matrix C of the fit parameters is given by  

 C=B-1 (9) 

when =0. 

Initial guesses 

In general, iterative methods, where a new set of parameters is generated on the basis of available initial guesses (IG), 

are used for fitting of a theoretical model to the experimental data [13]. If IG are in close proximity to the unknown 

parameters, they can significantly increase the efficiency and correctness of the fit. Moreover, if the target criterion 



surface has a complex shape with many local minima, the possibility to reach global minima directly depends on the 

quality of the IG. Even with obviously reasonable, physically admissible, but randomly chosen IG, the iterative 

procedure may converge to situations where the fitting model becomes distorted or cannot be even numerically 

evaluated. It is also important that reliable algorithm for IG generation reduces user participation and renders the 

whole procedure more standardized. For correlation functions the initial guesses for parameters are generated by the 

phase plane method. For PCH and FFC method of moments is primarily used.  

For example, for PCH model, user can select following types of IG: 

IG type Description 

None Generation of the initial guesses is not performed in any cases. 

Method of moments Generation of the initial guesses is performed by method of moments. 

User-defined The values defined by user will be used as initial guesses. In the case of Custom model 

these values can be set via Custom model configuration dialog box. 

Predefined values The predefined values will be used as initial guesses. These values are specific for each 

type of the model and do not depend on the data of characteristic associated with the model. 

Confidence intervals calculation 

Exhaustive search 

Error estimation of the recovered parameters can be performed by the exhaustive search method [12] (other name is 

support plane). In this method the examined parameter is fixed at a number of particular values in a predetermined 

range, while other parameters are allowed to adjust to the minimum of 2. Thus, the dependence of the 2  values on 

the particular parameter is observed. Analysis stops when the calculated value of 2 becomes higher than the 2 level 

obtained from the statistical F-test (for that particular confidential probability and number of degrees of freedom) [9]. 

The value of the examined parameter obtained by the procedure described above is taken as the border of the 

confidential interval. 

To set confidential probability use property CI Probability of the Experiment Object. 

Asymptotic standard errors 

Error estimation of the recovered parameters can be performed by calculating asymptotic standard errors (ASE) [14]. 

Confidential interval for the parameter pj, j = 0, 1,… is calculated according to the following equation: 

2 2

2, min 2, minj v ij j j v ijp t C p p t C       

In this equation:  

1. pj - the value of estimated parameter j; 

2. Cjj - the jj element of the inverted Marquardt matrix obtained after the analysis (Eq. 9); 

3.  ( is confidential probability (0 < < 1)); 

4. t/2,v - the upper percentage point of the t - distribution (Student’s distribution) with v=n-m-1 degrees of freedom (n 

is the number of experimental points and m is the number of estimated parameters). It can be calculated from the 

definitions of percentage point of Student’s distribution and its distribution function. 

5. 
2

min  - the value of 
2  obtained after the analysis. 

 

To set confidential probability use property CI Probability of the Experiment Object. 

Fit parameters dependence (FPD) analysis 

A special analyzable characteristic can be constructed in FFS Data Processor. It is a sequence of a certain fit parameter 

values versus either model number or any available external parameter like Time Step, Repeat Number, Duration, etc. 

So if one performs a number of experiments and the dependence of some model parameter versus parameter of the 

experiment (external parameters) is known, the construction and analysis of such parameters dependence curve is 

possible in FFS Data Processor. The typical application of this possibility is PCMH [28] where a brightness (or 

concentration) vs. bin time dependence is analyzed in order to get true brightness (or concentration) estimates. There 

are two special models: brightness vs. time and concentration vs. time, which are primarily designed to perform PCMH 

analysis. But one can also design his own custom models like exponential and fit necessary dependences. For example, 

dissociation constant DK  can be derived from a fit of the titration curve obtained as a dependence of the parameter 

F2 of FCS model versus dilution coefficient (the latter can be stored as an external parameter or can by typed in any 

numerical field of the Files table of the Measurements database, e.g. in the field Duration) to the equation  

 
which can be easily programmed in the custom model script.  

 



Coincidence analysis 

Coincidence value K(n) is calculated from experimental data by formula: 
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K(n) represents the coincidence value as a measure of the relative frequency of coincident events in two detection 

channels. N1(m) and N2(m) are the absolute photon count numbers of the emission signals (blue and red channels) in 

consecutive time channels m, and n is the total number of time channels in the trace. 

The experimental data time trace can be subdivided into a number of sections. In that case coincidence values are 

calculated on a base of each section and then their histogram is calculated. The coincidence histogram can be fitted 

by Gaussian distribution revealing average coincidence value and its standard deviation.  

Coincidence separation value is calculated according to the following equation: 
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where  K1 and  K2 are the standard deviations, <K1> and <K2> are mean values of the coincidence values K1(n) 

and K2(n) for two samples.  

Coincidence bursts counting 

Coincidence bursts can be automatically counted in the FFS Data Processor. Following things are possible: 

- Automatic selection and counting of bursts in both channels separately by setting min and max threshold on 

intensity graph; 

- Lee filtration of intensity graph; 

- Counting and selection of coincidence bursts by analyzing of start/end positions of each burst in both 

channels. Only bursts with given time overlap and photon counts ratio (implemented for the accounting the 

leaking of the fluorescence from blue to red channel) are counted; 

- Highlighting of the leaked bursts (in the red channel chart) by blue color; 

- Calculating of percentage of coincidence bursts from a number of bursts in selected channel. 

Simulator 

Simulation tools are aimed to investigate the performance of the fitting procedures with respect to the particular type 

of characteristic. Simulation consists of the numeric generation of the corresponding characteristic distorted by 

statistical noise. 

The characteristics of statistical noise are strongly dependent on the experimental methods and apparatus tools. In the 

case of FCS measurements, for example, expressions, describing statistics of the obtained correlation function, are 

known only for a limited number of particular cases. That is why we assume that value in each sampling interval or 

channel is the random value with Gaussian probability function with mean value equal to the true value of correlation 

function and empirically derived standard deviation: 

( )t t     

where ,  and  are the adjusted parameters (parameters of simulator). 
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