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Abstract

In this chapter, we describe the global analysis approach for processing time-resolved fluorescence spec-
troscopy data of molecules in the condensed phase. Combining simultaneous analysis of data measured
under different experimental conditions (spatial coordinates, temperature, concentration, emission wave-
length, excitation intensity, etc.) with the fitting strategy, enabling parameter linkage and thus decreasing
the total amount of estimated variables, makes global analysis more robust and more consistent compared
to a sequential fit of single experimental data. We consider the main stages of the global analysis approach
and provide some details that are important for its practical implementation. The application of the global
approach to the analysis of time-resolved fluorescence anisotropy is demonstrated on experimental data of
(enhanced) green fluorescent protein in aqueous solution.
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1 Introduction

Structural and dynamical properties of complex, fluorescent
biological and chemical systems can be successfully studied using
time- and frequency-domain methods of time-resolved fluores-
cence spectroscopy [1]. The most commonly used time-domain
experimental method is time-correlated single-photon counting
(TCSPC). In this method the fluorescent sample is excited by a
series of short laser pulses of fixed repetition rate and the fluores-
cence decay is measured and stored in computer memory [1].
Quantitative information about the explored molecular system is
obtained by fitting the model-generated decay curve to the experi-
mental sample fluorescence decay. This gives the values of model
parameters that characterize the sample under study. In the time-
resolved frequency-domain approach [1] the sample is excited by
intensity-modulated light at different modulation frequencies. The
emission signal of the molecular system is then demodulated and
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phase-shifted with respect to the modulated excitation light. The
dependencies of degree of modulation and phase shift on the
modulation frequency are measured and analyzed by the appropri-
ate model to estimate the values of fit parameters characterizing the
sample under study.

The experimental methods of time-resolved fluorescence spec-
troscopy are frequently applied to measure fluorescent molecules in
the condensed phase under different experimental conditions such
as different temperatures, emission wavelengths, and concentra-
tions. Since some parameters characterizing the investigated molec-
ular system may be independent on the experimental conditions,
these sets of data can be simultaneously analyzed using a global
analysis approach [2, 3]. The fit parameters that are the same in
different experiments are linked and thus kept equal for the
corresponding measured curves participating in the fit. The other
parameters that change with experimental conditions are fitted
independently. As the overall number of fitted parameters
decreases, whereas the amount of experimental data remains the
same, the global analysis approach has proved to be more
robust and more consistent compared to the separate analysis of
single curves.

The abilities of the time-resolved fluorescence spectroscopy are
significantly extended with introduction of the fluorescence life-
time imaging microscopy (FLIM) technique [1, 4, 5]. This tech-
nique uses a wide-field or a confocal microscope to perform the
time- or frequency-domain measurements in various spatial points
of the sample, thus resolving the immediate molecular environment
and the state of a fluorescent molecule in a microscopic image.
Another example is the use of genetically encoded fluorescent
proteins such as green fluorescent protein (GFP), which can be
attached to the protein of interest and expressed in living cells
[6]. When two different proteins are labeled with two different
variants of GFP, for instance cyan fluorescent protein (CFP) and
yellow fluorescent protein (YFP) in living cells, the distance
between these proteins when interacting can be mapped in a living
cell by using FLIM combined with Forster resonance energy trans-
fer (FRET) [7]. In the following we use the term donor for a
protein that is tagged with CFP and the term acceptor for the
other protein that is tagged with YFP. In other biosensors donor
and acceptor are both linked to a common protein that changes
conformation when a ligand is bound and thus alters the donor—
acceptor distance. When FRET occurs (i.e., when donor and accep-
tor are a few nanometers apart) the reaction between excited donor
and acceptor in the ground state will decrease the fluorescence
lifetime of the donor in various points of the image. The appearance
of double-exponential fluorescence intensity decays is frequently
encountered because of the presence of a mixture of FRET-active
and FRET-inactive donor molecules [8, 9]. To detect the spatially
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dependent relative contribution of donors participating in FRET
global analysis may be applied. The fluorescence intensity decays
measured in different points of the image are analyzed globally
using double-exponential models. The corresponding fluorescence
lifetimes for all space points are linked whereas the pre-exponential
factors for each exponent are fitted independently (for an example
see ref. 10).

In this chapter we present the main stages required to perform
the global analysis of time-resolved fluorescence spectroscopy data.
We focus on some practical details important for its implementa-
tion. As illustration we show the application of global analysis for
fitting the time-resolved fluorescence anisotropy of enhanced GFP
from Aequoren victoria (abbreviated as EGFP) in aqueous, buffered
solution.

2 Materials

2.1 EGFP

2.2 Time-Resolved
Polarized
Fluorescence
Measurements

The purification of EGFP has been described previously [11, 12].
Protein solutions were prepared in 20 mM Tris bufter (pH 7.0).

Time-resolved fluorescence measurements (20 °C) were carried out
using a mode-locked laser pumped by a continuous-wave laser for
excitation and TCSPC as the detection technique, as extensively
described previously [8, 11, 13]. The samples were excited with
plane-polarized light pulses (0.2 ps FWHM) at an excitation fre-
quency of 3.8 MHz and both parallel- and perpendicular-polarized
fluorescence intensities were detected.

Experiments with EGFP were conducted at 470-nm excitation
and fluorescence detection via the combination of 515-nm cutoff
and 512-nm interference filters.

The reference compound for time-resolved fluorescence decay
experiments with 470-nm excitation and 512-nm detection was
erythrosine B in aqueous solution having a fluorescence lifetime
of 85 ps. In all experiments the binning time was 5 ps and 4,096
time channels were used.

3 Methods

3.1 General Global
Analysis Algorithm

The global analysis method is based on the simultaneous processing
of more than one separately measured data set of a fluorescent
species in the condensed phase (see Fig. 1). Such data sets are
usually obtained by measuring samples under different experimen-
tal conditions (temperature, emission wavelength, excitation inten-
sity, etc.). The application of global analysis becomes meaningful if
at least one of the unknown parameters can be assumed to be the
same for different measurements. Therefore these parameters, even
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Fig. 1 General scheme of global analysis

though being assigned to different experimental data sets, are
united into one parameter in the fitting procedure. The global
analysis is more robust and consistent than the separate analysis of
individual data sets, because it exploits measured information avail-
able from several data sets in a more efficient way by reducing the
total number of fit parameters.

The global analysis method can be applied to fit the time-resolved

fluorescence data obtained from both time-domain and frequency-
domain measurements and includes several consecutive steps.

1.

Collect the data to be analyzed and prepare the data sets. The
term “data set” refers to the set of information that can be
analyzed by a single mathematical model with a well-defined set
of parameters. The data set contains the measured, possibly
multidimensional, data from the sample (e.g., fluorescence
intensity decay, phase shift, demodulation). In addition, either
prior known or experimentally obtained information required
for the analysis can also be included.

For time-domain measurements, each data set contains the
temporal information (either as time points or as time step and
the number of time points), sample fluorescence intensity
decay, and either the instrumental response function (IRF,
obtained with a scattering solution) or the fluorescence inten-
sity decay of a reference compound with known fluorescence
lifetime. The latter is used for deconvolution of measured data
(see step 2). A background sample such as solvent alone,
obtained at the same conditions as the investigated sample,
accounting for impurities or Raman scattering in the sample
may also be added to the data set.

For frequency-domain measurements the data set includes
the sequence of modulation frequencies and values for phase
shift and degree of modulation obtained for each frequency.
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Optionally, the data set can include the list of external
parameters reflecting the conditions of the measurement
(e.g., temperature, excitation/emission wavelength, polariza-
tion angle). As these parameters are set by the user during the
measurement and are typically known precisely, they can be
used by some models as preset (fixed) values to calculate the
theoretical curve.

. Select the model for each data set created in step 1. Depending
on the model, an algorithm should be developed and imple-
mented generating the theoretical curve that is fitted to the
measured one.

The analytical models that are applied for fitting the fluo-
rescence intensity decays are based on the following general
equations.

If an IRF is used for deconvolution, the basic model for
calculating the theoretical decay f™(¢) takes the form

o) =t +6) =) @ I(t, A) +yB(t) + e+ n
X (g(t+6) — b), (1)

where g(z + §) denotes the instrument response function with
a time shift of § relative to the emission response; B(z) is the
measured intensity of time-dependent background emission
contributing with a relative weight of y; & and ¢ are constant
values for dark noise and time-uncorrelated background
photons in g and f, respectively; # is the scattered light coeffi-
cientand I(z, ﬁ) represents a model function with the vector of
fit parameters A.

For deconvolution using a single-lifetime reference com-
pound the basic model takes the form

I(t, A) . dz(t,ﬁ)>

Tref dz

1) = (fer (1) = 0) @ (50)1(0,3) +

+rB(2) + ¢, (2)

where frr(#) denotes the measured one-exponential reference
compound fluorescence intensity decay with decay time zy¢
and 6(#)—Dirac delta-function. .

To complete the model, the function I(#, A) should be
defined. It reflects typical physical processes taking place in
the sample under study. A number of models for I(#, A) have
been published [1, 14, 15]. These include simple models, such
as a sum of exponentials or stretched exponential, as well as
more complicated ones used in the compartmental formalism.
One of the most widely used equations for I(z, A) is the sum of
exponential terms:

1(t,4) =" e, (3)
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where p; and 7;(j = 1,..., M) are, respectively, the amplitudes
and decay times of corresponding exponents and M is the
number of exponents in the sum. The multi-exponential
model can be used to fit the fluorescence intensity decays
obtained from the mixture of noninteracting species, donor
molecules when resonance energy transfer process takes
place, etc. [1].

The analytical models for fitting the data obtained from
frequency-domain measurements are based on the sine

N(w, A) and_ cosine D(w, A) Fourier transforms of the
function I(¢, A):

= (2, A wt)dt
N, A) = Jo I iy ) sin(w )
0

Diw, A) = [ I(x, A) cos(a)t)dt
w?
fo (r, A)dz

)

where o is the angular modulation frequency of the excitation
light. The general model equations for phase shift ¢(, A) and
degree of modulation m(w, A) are

o(w, A) = arctg(N(w,A) /D(w,ﬁ)), "

m(w, A) = \/ N2 (w, ) + D2(w, A).

It I(z, A) is a sum of exponents and defined by Eq. 3, the
models for g(w, A) and m(w, A) become

M [0 pj‘r 7
>j-1 Tre?d
72 T | (5)

j=1 1+w27?

—

p(w, A) = arctg

2 2
- 1 M 0P Mo PiTy
A =— — :
o 1= st (Share) (2t
(6)

Note that parameters p;(j = 1,..., M) in Egs. 5 and 6 define
the contribution of corresponding components in the sum,
whereas amplitudes in Eq. 3 are also responsible for fitting
the amplitude of the fluorescence decay.

. Link parameters: Every model selected in step 2 contains the

set of fit parameters. The term “fit parameter” refers to the
value of interest that should be estimated during the analysis.
For each fit parameter the range of admissible values can be set
by defining the minimum and maximum constraints. The num-
ber of fit parameters and their physical interpretation depend
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on the selected model. The models based on Eqs. 1 and 2 have
experiment-specific fit parameters (8, 4, y, c» for Eq. 1 and
b, v, ¢, Trer for Eq. 2) and sample-specific parameters defined
by I(z¢, A). For the multi-exponential model defined by Eq. 3
for time-domain measurements and by Eqs. 5 and 6 for
frequency-domain measurements the model-specific para-
meters are p; and 7;(j = 1,...,M). The fit parameters from
all models make up the common list of fit parameters. If for
certain parameters the value is known or has been already
determined from other, independent experiments, its value
can be fixed so that it will remain unchanged during the fit.

The key feature of the global analysis is the parameter
linkage. The linking procedure can be introduced as creating
a group of fit parameters that must be kept equal during the fit.
The settings (value, minimum, maximum, etc.) of fit para-
meters included in such group always match the appropriate
settings of the group itself. In most cases one parameter group
contains the fit parameters that are supposed to have the same
value. The linked fit parameters are excluded from the common
fit parameter list, whereas the created fit parameter group is
added to this common list as a new fit parameter. Since the link
procedure replaces several fit parameters in the common list by
a group, the total number of parameters to be estimated is
reduced. For the analysis to be global, at least one fit parameter
group should be created. Generally the number of such global
groups is more than one.

. Initial guess generation: Initial guesses (IG) are required to
make the forthcoming iterative fitting procedure fast and reli-
able. Therefore the IG should be reasonably close to the opti-
mal values of fit parameters that correspond to the best fit of
experimental data. If IG are chosen randomly and are located
relatively far from the optimal values of fit parameters, the
iterative algorithm may converge rather slowly and in some
cases may stop untimely, thus leading to biased parameter
estimates. To automatically generate the initial guesses a fast
non-iterative algorithm should be applied. Such algorithms
always take into account the particularity of the models selected
for the fit and therefore are not available for any combination of
models within global analysis. If such algorithms exist, it is
always recommended to use them in combination with the
iterative fit routine.

In many practical applications such as FLIM the multi-
exponential model can be applied for the global analysis of
fluorescence intensity decays [2, 3]. The model is defined by
Eqgs. 1 and 3, for which the corresponding decay times are
assumed to be equal for different data sets and therefore they
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=

e

should be linked, whereas the amplitudes are allowed to be
different. If instrumental distortions in Eq. 1 are negligibly
small (parameters &, &, y, c» equal to 0), the phase plane
method can be used to generate initial guesses [16, 17]. It is
based on the equivalence of the model given by Eq. 1 with

I(#, A) defined by Eq. 3 to the following integral equation:

M M
Z ciFy(t) = Zﬂi/Gij(t), (7)
Jj=0 j=1

te AV
By = i) @ 9y(s) = [ PSS

to. AT
Gy (x) = 5i(1) © (1) = /0 VA Gl Y

(-1
1
() = —
i=1,..., m,where m is the number of data sets. The coeffi-

cients ¢, are functions of the decay times only. As the decay
times are linked, ¢; do not depend on the data set index s.
Cocfficients p;; depend on both decay times and amplitudes.
These coefficients are different for each data set because expo-
nential amplitudes are not linked. Taking into account Eq. 7
the algorithm of the phase plane method can be described as
follows.

(a) Calculate integral functions F;j(#) and Gj;(¢). Since in prac-
tice f;(#) and g;(¢) are obtained on discrete set of time
points (k= 1,..., N) the integration is replaced by sum-
mation and discrete convolution of f;(#,) and g;(#) with
@;(t) is calculated giving Fj;(#,) and Gy ().

(b) For each data set construct the following matrices:

Fio(1) Fio(tn)
Fa () Fi(ty) B Ga(n) - Ga(ew)
- ;o Gi= : ' : :
Fu(n) ... F,-M'(tN) Giu(t1) ... Giu(tn)
1/fi(n) 0 0
-~ 0 1/fi(2) - 0

00 Uk
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(c) Obtain the vector of coefficients ¢; by the linear least-
squares method. To do this prepare for each data set the
matrices:

Find the coefficients ¢; by solving the system of linear
equations. This solution in matrix form can be repre-
sented as follows:

C=A4/B, (9)

where Cis a vector of coefficients ¢j(j = 1,..., M); matri-
ces A and B are obtained from matrix S:

Syy - -
A= ; B=-— <SZIES(M+1)1>~
Sms1y2 - - -

(d) Calculate estimations for decay times as roots of the fol-
lowing polynomial:

M . .
> (1Y g M =0, (10)
7=0

where ¢g = 1; ¢;(j = 1,..., M) are taken from vector C

obtained above from Eq. 9. In most cases the roots of
polynomial in Eq. 10 are calculated numerically [18].

(e) For each data set calculate the amplitudes of exponents
pii(i=1,...,m;j=1,..., M) from the following equa-
tion:

M-1 k
im0 (=1)'Pig1)Ts

pij - M 7; ’
Hm:l,m;éj (1 - i)
where decay times 7; are obtained by solution of Eq. 10;

coetficients p;; are elements of vector 7; calculated for each
data set as follows:

7 = (1C)R;, (12)

(11)

where C is calculated from Eq. 9 and R; obtained from
Eq. 8.

5. Iterative fit: The iterative fit procedure is used for getting final
estimations of fit parameters that provide the best match of
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theoretical curves generated by the particular model and the
measured data. To organize the iterative fit the target fit crite-
rion (TFC) and optimization method are required.

The TFEC is used to quantify the distance between the
theoretical curves generated by the model and the
corresponding measured data. The choice of the appropriate
TFEC is based on the type of statistical noise in the experimental
data. For global analysis of time-domain data three TFECs are
often used. All these TFCs are based on the maximum likeli-
hood approach [19-22].

When the number of detected photons in each time chan-
nel is relatively high, the noise distribution can be well approxi-
mated by Gaussian statistics [ 19] and the TFC is defined by the
chi-square equation:

N
1 m N (xlk - F; (A))
2 Z
)(G = 1) (13)
n—s—liF o

where v = # — s — 1 is the number of degrees of freedom; 7 is
the total number of data points from all data sets that partici-
pate in the calculation of sums in Eq. 13; s is the total number
of fit parameters (non-linked parameters from all models and all
paramctcr groups) available for optimization; &y, Fif (A) and

02, are, respectively, experimental value, theoretical value, and
variance in the k-th point of the i-th data set. The application of
TFC based on Eq. 13 leads to the iterative fit procedure, which
is well known as the weighted least-squares method [1, 19, 21].
Some practical remarks related to application of Eq. 13 are
given in Note 1.

For some time-domain measurements, such as single-
molecule fluorescence detection and FLIM, the number of
photons registered in each time channel of fluorescence decay
is relatively small. At the same time the number of time chan-
nels in each decay is large, so the probability to detect a photon
within a separate time channel is small. Application of the TFC
defined by Eq. 13 for such data leads to getting biased esti-
mates of fit parameters [20]. For such cases the statistical noise
is better approximated by the Poisson distribution. Under this
assumption the TFC for global analysis takes the form

2 m i
=y 2 2

=1 k=1

—xi+ Ff (). (14)

Ffzi‘ 4)
The scheme of the single-photon counting technique also
allows applying the multinomial distribution for description of

statistical noise in the measured fluorescence decays. At each
registration cycle of the fluorescence decay measurement no
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more than one photon is detected in one of the N channels.
Registering the photon in a certain time channel is one of N
possible outcomes occurring each time when the photon is
detected. Such experimental scheme leads to the multinomial
distribution of statistical noise in the measured data. In this
case the TFC for global analysis is defined by the following
equation:

(15)

While using Eq. 15 in practice the following condition should
be ensured during each iteration of the fit:

Ni Ni
Y xp=) FpA), i=1,..., m (16)
k=1 k=1

The iterative fit procedure based on either Eq. 14 or Eq. 15
is known as the maximum likelihood estimation method
[20-22].

The global analysis of frequency-domain data is performed
by least-squared method with the TFC defined by Eq. 13 [3].
The variances ¢, in this case are obtained experimentally.

The optimization method finds the estimations of fit para-
meters that match the minimum of the TFC, thus ensuring the
best correspondence between measured and model-generated
data. Each optimization method is based on the unique math-
ematical algorithm that finds the minimum of the TFC by
calculating and processing its values for different points in the
fit parameter space. One of the most popular classes of the
optimization algorithms is based on gradient optimization. It
requires calculating the derivatives of the TFC with respect to
fit parameters. Gradient optimization methods demonstrate
better performance in comparison with non-gradient methods,
when the required derivatives are available. Although the deri-
vatives of model functions can often be calculated numerically
with sufficient accuracy, analytical derivatives are preferable
ensuring higher numerical accuracy and higher processing
speed. Gradient methods are not suitable when the theoretical
function is obtained by the model that is based on Monte-
Carlo simulations. In this case, the model-generated data are
obtained by a stochastic simulation algorithm instead of an
analytical function and thus contain statistical noise. Therefore,
the derivatives required by the gradient method cannot be
calculated analytically, whereas the application of numerical
algorithms leads to significant errors.

One of the most frequently used gradient algorithms is the
Marquardt-Levenberg optimization algorithm [19, 23]. This
algorithm consists of the following steps.
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(a) Set the initial guesses for fit parameters as a current point
in parameter space ai"" =a" j=1,..., 5. Initialize
the regularization value 4 (for example 4 = 0.001).

(b) Calculate the TFC y2, for the current point.

(c) Calculate matrices of the system of linear equations A and
B. The elements of these matrices depend on the deriva-
tives of the TFC with respect to the fit parameters and are
defined as follows:

82)(2 a)(Z

ji=——F—;Bi=—>— i=1,....5s7=1,...,5s. (17

J 8@,-6%- J (9ﬂj ! 5 g ( )

All derivatives are calculated at the current point in the

parameter space (at the beginning this is the point defined

by initial guesses).

A

(d) Modify the diagonal elements of matrix A:

A,’,‘I(l —I—/I)A,'i, i=1,...,s. (18)
(e) Solve the system of linear equations:
AX = B, (19)

where X is a column vector that contains the fit parameter
increments Aa; for the current iteration.

(f) Calculate a new trial point in the fit parameter space:

ﬂ]t»r =" +An;, j=1,....5 (20)

For the new point calculate the value of the TFC, y2. For
some practical recommendations on this step sec Note 2.

(g) If y2 12, the new trial point in fit parameter space is
accepted and is set as the current point, i.e.,
"t =al 2o = 1% The value of the method param-
eter Ais decreased: 4 = 0.14. Alternatively, if y2 > 42, the
trial point is ignored and the value of method parameter 4

is increased: 4 = 10A4.

(h) The stop optimization conditions are checked. The first
one is defined as follows:

2> Amax- (21)

This condition is used to stop iterations when the method
cannot find the direction to the minimum of the TEC. In
practice Ama.x = 1010,

The second stop condition is used when the optimal
point in fit parameter space has been successfully found
with the required accuracy:

|Z%r B )(gurr |

3 <e (22)
XCHI‘I‘

=&
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where ¢ is the small accuracy value that is set beforehand.
In practice it can be equal to 107°.

When at least one of the stop conditions is satisfied,
the iterations are interrupted and the current point
defined by ", 7=1,..., sis returned as the result.
Otherwise the method moves to step ¢ and a new itera-
tion starts.

6. Judging the quality of the fit: The final stage of the global
analysis procedure consists in evaluation of the quality of the
obtained results. For this purpose several fit quality criteria are
used. The first is the final value of the TFC calculated by
Eqs. 13-15. This value should be close to 1 for a good fit.
Besides the TFC two graphical criteria, weighted residuals and
autocorrelation function of weighted residuals, are widely used
for judging the goodness of the fit. Both these criteria are built
individually for each data set and are defined on the same
argument range as the measured data.

The weighted residuals are used for visual inspection of the
agreement between measured and model-generated data. The
weighted residuals correspond to the type of the TEC used for
the fit. In the case of chi-square TFC (Eq. 13) the residuals are
calculated according to the following equation:

w— FN(A
Re= " F) N (23)
ik

In the case of Poisson statistics (Eq. 14) the residuals are
calculated as

R;;, = sign (x,-k — Fflﬁ‘ (ﬁ))

. \/2 (saln (s ER D)) + () ). (24)

wherez=1,..., m; k=1,..., N; and function sign(x) is equal to
—1 in the case of negative x and 1 otherwise. For the multinomial
statistics (TFC is defined by Eq. 15) the equation for the weighted
residuals takes the form

R, = sign (xik — Ff;i’ (A)) ’29% In (x,k/F;; (A))

i=1,...,mk=1,..., Ny

7

(25)

For the successtul fits the weighted residuals should be ran-
domly distributed around O.

The plot of the autocorrelation function of weighted residuals
[1,24] provides another valuable visual check of the quality of the fit.
The autocorrelation function of the weighted residuals for z-th data
set in the k-th point of argument C,(s = 1,..., m; k=1,..., N;)
is calculated by the following equation:
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1 N;—k+1 1 N;
Cip = N —k+1 v szRz(/Jrlel)/(M ;1 Rij)a (26)

where Rj; is the value of weighted residuals calculated for i-th data
set in the j-th point of argument and N; is the number of points for
which weighted residuals are calculated. The plots of autocorrela-
tion are usually made across half of the data points (N;/2). In many
cases the visual inspection of the autocorrelation function is more
sensitive for the goodness of the fit than a plot of weighted resi-
duals. For successful fits the autocorrelation function of weighted
residuals is randomly distributed around zero. Bad fits provide low-
frequency periodicity in an autocorrelation plot that can easily be
detected by eye. For additional details related to calculation of
autocorrelation plots se¢ Note 3.

Besides fit quality criteria described above additional fit quality
criteria (standard deviation of y?, Durbin-Watson parameter, etc.)
can be considered [24].

As the parameters are estimated from the measured, statistically
distorted data, they are known with some error. To quantify the
error in the estimated parameters, we use confidence intervals. The
confidence interval is the range where the true value of the fit
parameter is located with some confidential probability.

The confidence intervals for fit parameters can be found by the
exhaustive search method [1, 25]. The advantage of this approach
is that it takes into account possible correlations between para-
meters. The search procedure starts from the optimal value of
examined parameter obtained after a successful global fit. The
value of the selected fit parameter is shifted from the optimal
value to the left or to the right (depending on the bound of the
confidence interval that should be found) with the predefined step.
After each move the examined parameter is fixed to the shifted
value and other parameters are adjusted to find the minimum of
the TFC. The new TFC is compared with the yZ  level calculated
from the statistical F-test as follows:

Xﬁn1:)(r2nill<l+m1:(57%_X_l)l_ﬁ))7 (27)
where x2,. is the minimum value of TFC obtained from the global
analysis before calculation of confidence intervals, s is the total
number of fit parameters available for optimization, v =% —s —1
is the number of degrees of freedom, f is the confidential probabil-
ity (0.67, 0.95, etc.), and F(s, » —s — 1, 1 — f3) is the F-statistic.
The search procedure stops when the TFC value becomes equal
(with some predefined accuracy) to the y{  and the corresponding
shifted value of the examined fit parameter is taken as a bound of
confidence interval.
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The global analysis approach described in Subheading 3.1 can be
applied for fitting time-resolved anisotropy. The algorithm of
global analysis (see Subheading 3.1) adopted for this application
consists of the following steps.

1. Prepare the data sets. The data sets for anisotropy analysis
contain the fluorescence decays measured for different polari-
zation angles ©. In practice two data sets for parallel (@ =0
degrees) and perpendicular (® =90 degrees) polarization
components are used. Some practical recommendations related
to preparing the data sets with the IRF for anisotropy analysis
are given in Note 4.

2. Select the models. The model for global analysis of sample
polarization components is based on Eqs. 1 or 2 where the
function I(#, A) is defined by the formula

M
I(r,4) = H(Z ajet/r])
=

X [1 + (3cos*(©) — 1) (VDO + Z;zl T ﬂke_t/(l)k)]v
(28)

where H is an amplitude parameter; a; and 7; are, respectively,
the contributions and decay times of 7-th fluorescence exponent

(Z]Ail a; = 1); 7 18 the residual polarization; g, and ¢, are,

respectively, the amplitudes and rotational correlation times of
corresponding anisotropy exponents; Ty, controls the associa-
tions Tj, = 1, if fluorescence and anisotropy exponents are asso-
ciated, and Tj, = 0, if not; and M and L are, respectively, the
number of fluorescence and anisotropy exponential components.

3. Link the parameters. Since each data set for anisotropy
analysis is fitted by the model based on Eq. 16, the set of fit
parameters includes H, a;, 7, 7x, fB, and ¢, and
j=1,...,M; k=1,..., L. The value a7 is not fitted directly
because the sum of contributions @; should be kept equal to 1.
Therefore the value a is simply calculated asa; = 1 — Z]Aiz a;.
The fit parameters with the same names should be linked for all
data sets participating in the global fit. The only exception is
parameter H, as it takes into account the absolute amplitude of
the sample polarization components and therefore it is differ-
ent for different data sets.

4. Generate initial guesses. Although no special initial guesses
algorithm exists for Eq. 28, the start values of some parameters
can nevertheless be obtained automatically. For example, if
possible ranges for decay times and rotational correlation
times are known and a number of fluorescence and anisotropy
exponents is selected, the initial guesses for parameters 7;
and ¢, can be uniformly distributed in corresponding ranges.
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3.3 Example of
Global Anisotropy
Analysis of Enhanced
EGFP

The initial guesses for all contributions a; can be selected equal
to 1/M. In most cases the initial values for f, can be set
equal to 0.4/ L.

5. Perform the iterative fit. The instructions for the iterative fit are
given in Subheading 3.1.

6. Judge the goodness of the fit. To judge the quality of the fit of
sample polarization components the fit quality criteria pre-
sented in Subheading 3.1 can be applied. Additionally, the
measured and model-generated anisotropy decays can be built
from polarization components and presented graphically. The
anisotropy decays are calculated as follows:

r(t) = L(t)/H — L(t)/H,
Il(f)(l — 3C052(®2))/H1 — Iz(t)(] _ 3COSZ(®1))/H2 s

(29)

where I;(¢) and L(#) are sample polarization components (mea-
sured or model-generated) that correspond to the polarization
angles ©; and ©;, respectively, and H; and H; are estimated values
of amplitude parameters (Eq. 28). When a shift & exists between
measured polarization components I;(#) and L(¢), then before
calculating the anisotropy decays this shift should be compensated
by moving, for example, L (¢) to I;(¢) over & time units.

When the total IRF is used for fitting polarization data (see
Note 4) the sample G-factor G; can be estimated using amplitude
parameters that correspond to the parallel H and perpendicular
H, polarization components:

(30)

At the same time it is recommended to fix G-factor to the value
obtained from the additional measurements, since the relation
between parameters H| and H| is correlated with anisotropy para-
meters 3, and ¢,. This can be done by fixing H| and H, to some
values that being substituted to the Eq. 30 give the required value

of Gi. In this case the condition (Zj‘il a; = 1) cannot be kept

anymore. Therefore all parameters a; with the same indexes should
be linked and the obtained parameter groups should be estimated
to fit the amplitudes of the sample decays.

To demonstrate the application of global approach for time-resolved
anisotropy analysis the parallel and perpendicular fluorescent com-
ponents of enhanced green fluorescence protein (EGFP) were
measured and fitted globally according to the algorithm described
in Subheading 3.2. Global analysis was performed with the TRFA
Data Processor Advanced software (SSTC, http://www.sstcenter.
com). Since one-exponential reference compound was used for
deconvolution, the general model Eqs. 2 and 28 were selected to
obtain model-generated curves. The total decays for reference
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Fig. 2 Experimental (points) and fitted (solid line) curves of parallel (/eft panel) and perpendicular (right panel)
polarization components of EGFP. The results are obtained by the global analysis approach. The quality of the
fit can be judged by graphs of weighted residuals and their autocorrelation shown at the boftom of both panels.
The target fit criterion ;(% = 1.089. The estimated values of fluorescence lifetimes are 4 = 0.771 ns (with
contribution of 8.4 %) and 7o = 2.735 ns (with contribution of 91.6 %). The rotational correlation time was
estimated at ¢y = 15.6 ns with initial anisotropy f; = 0.383

compound were prepared from its polarization components accord-
ing to Note 4 and added to the corresponding data sets. For both
data sets the models defined by Eq. 28 were configured to include
two fluorescence exponents (M = 2) and one anisotropy exponent
(L = 1). The values of parameters H| and H, were fixed to the same
values to keep the Gy = 1. Parameters a; were linked for both data
sets and obtained parameter group was fitted as a separate fit param-
eter. Reference lifetime parameters 7,.s for both data sets were fixed
to the prior known value. Since constant background was not
observed in the measured data the parameters & and ¢ from Eq. 2
were fixed to 0. The intensity of time-dependent background emis-
sion B(#) was available from the measurements for both parallel and
perpendicular components with known relative weight equal to 5
(parameters y for both data sets were fixed to this value). The number
of registered photons was high enough to accept the Gaussian
approximation of statistical noise in both polarization components
of the sample. Therefore the TFC defined by the chi-square Eq. 13
was applied. The Marquardt-Levenberg optimization method was
used in the iterative fit. The confidence intervals for fit parameters at
95 % level were estimated by the exhaustive search method.

The results of the global analysis of both EGFP polarization
components are presented in Fig. 2. The graphs for anisotropy are
shown in Fig. 3. The final value of the TFC obtained after the fit
2% = 1.089. This value as well as the presented graphs for weighted
residuals and their autocorrelation functions for both polarization
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Fig. 3 Experimental (points) and fitted (solid line) curves of EGFP anisotropy. The quality of the fit can be
judged by presented graphs of weighted residuals and their autocorrelation. Parameter values are given in the
legend of Fig. 2

components prove that the fit was successtul. The estimated values of
EGFP lifetimes are 7; = 0.771[0.714; 0.816] ns (with contribution
of8.4(7.9;8.8]%) and 7, = 2.735[2.711; 2.742] ns (with contri-
bution 0f 91.6 [91.5; 92.3] %). The rotational correlation time was
estimated at ¢, = 15.6 [15.2; 16.0] ns with initial anisotropy
$1 = 0.383 [0.382; 0.386]. The values shown in square brackets
represent the estimated confidence intervals at the 95 % level. The
obtained parameter values for EGFP are in good agreement with the
results reported previously [11, 26, 27]. This result also demon-
strates that the global analysis scheme presented in this section can be
successfully applied in practice for fitting the experimental data.

4 Notes

1. If Eq. 13 is applied to fit time-domain data and analytical
models are selected for the fit, then the variances in each time
point are defined as 6%, = 1/x;. The measured fluorescence
intensity decays can contain time channels where no photons
were detected and therefore x;, = 0. Since afk for such points
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cannot be calculated these points are excluded from the sum in
Eq. 13 and total number of points 7z decreases.

. In most cases the constraints are defined for all fit parameters.
The simplest type of the constraint is setting minimum and
maximum values but more complex functional constraints are
also possible. In the presence of constraints the new values of fit
parameters obtained by the optimization method (Eq. 20)
should be checked to satisfy them. If the values of some para-
meters do not satisfy their constraints, the new values of these
parameters are replaced by values from the current point in the
fit parameter space. Then the new set of fit parameter values
will contain the mixture of new values 2" obtained by Eq. 20
and current values ﬂ]‘f““, j=1,..., 5. Forming such mixed
vector of fit parameter values is more effective than completely
decline the new set of values obtained by Eq. 20, because it
makes the behavior of the optimization method more flexible
in the area close to the boundaries of possible values of fit
parameters.

. As it follows from the Eq. 26, C;; = 1. This means that each
value of weighted residual Ry, is fully correlated to itself. In
order to make autocorrelation plots more convenient for visual
inspection the value Cj is replaced by 0 on the graphs.

. For the measured IRF /reference data an additional preproces-
sing is required before they can be included to the data sets for
anisotropy analysis. Let us consider this procedure for the case
of'an IRF (for a reference compound the same steps should be
performed). In order to accurately estimate the value of the
sample G-factor after the fit the data sets for anisotropy analysis
should include the total IRF that corresponds to the magic
angle, although the IRF curves are usually measured on the
same polarization angle as sample fluorescence intensity decay.
To calculate these total curves the polarization components of
IRF g)(t) and g.(¢) can be used and possible time shift
between these components should be taken into account.
The time shift g of perpendicular IRF polarization compo-
nent in respect to the parallel one is detected by a superposition
of their rising edges, thus ensuring better fit of sample decays at
the beginning. The IRF for parallel component data set is
prepared by the formula

J0(2) = g)(¢) + 2 x Greg(t + O1re), (31)
where Girg is the G-factor at the wavelength used for IRF

measurement. The IRF for perpendicular component data set
is calculated as

590(2) = g)(t — dre) + 2 X Gregu (7). (32)
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Application of total IRFs to fit the sample polarization
component data potentially allows to restore the sample G-factor

after the fit.
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